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1. 	Introduction

New threats to human health, particularly the emergence and spread of infectious diseases in regions 
outside of their historical range, are becoming a major issue associated with components of global 
environmental change. Contributing to this is the role that climate variability and change, and extreme 
weather events, may play in altering infectious disease risk. This is important as this process will 
compound the already significant burden of infectious diseases on national economies and public health.

Building on current capability we have developed the Health Analysis & Information For Action (HAIFA) 
resource system. The resource aims to provide central, regional and local authorities with information to 
help them formulate and plan the implementation of responses and adaptive strategies for increasing 
human health resilience to the infectious disease consequences of climate variation and change. The 
development of the HAIFA system is to Proof-of-Concept, using six indicator infectious diseases as a 
framework for the modelling. The six diseases being campylobacteriosis, cryptosporidiosis, meningococcal 
disease, influenza, and Ross River and dengue fevers (the latter two are exotic diseases for New Zealand).

The report herein describes the methodological approaches used in the development of the disease 
specific predictive models (mathematical, statistical, and mechanistic) for climate change projections via 
the analysis of health, demographic, climate, and environmental data at the 5x5 km spatial scale across 
New Zealand. Disease projections were made for the three greenhouse gas emission scenarios B1 (low), 
A1B (medium), and A2 (high) and the three time periods 2015, 2040, and 2090. The disease projection 
results can be viewed via the purpose built geographic information system portal on the HAIFA resource 
system web site.

Using HAIFA, end-users will now be able to (i) make predictions of which infectious diseases (of the six) 
and contributing risk factors will be of key concern to human health in 2015, 2040 and 2090; (ii) predict 
changes in the occurrence levels of these infectious diseases due to climate change; (iii) identify the 
communities and population groups most likely at risk from these infectious diseases; and (iv) recognise 
the infectious diseases predicted to most threaten specified communities and population groups. This 
information will help end-users plan responses to the potential impacts of climate variation and change.
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2. 	Data

2.1  Climate data
Daily climate data were provided by NIWA for the 11 year period 1997 – 2007. Data from approximately 
150 climate stations were extracted from New Zealand’s National Climate Database (CLIDB) and 
interpolated onto a regular ~5km grid (0.05° lat/long resolution), forming 11,491 Virtual Climate Station 
(VCS) grid cells covering the entire country. The thin-plate smoothing spline interpolation scheme used 
is described in Tait (2008) and Tait et al. (2012). The base areas for all the modelling data in the HAIFA 
project were subsequently defined by the 11,491 VCS grid cells.

Seasonal climate projection data were produced for three time periods 2015, 2040, 2090. These periods 
consisted of 2030–2049 (midpoint reference year, 2040) and 2080–2099 (midpoint reference year 
2090). Projections for the reference year 2015 were linear interpolated by multiplying the projected 
changes between reference years 2002 and 2040 by 13/38. The climate projections for each of the three 
greenhouse gas emission scenarios selected (low, B1; medium, A1B; and high, A2; Nakicenovic and Swart 
2000) were the average from 12 global climate models, downscaled to the same ~5km grid resolution 
for New Zealand. Details of these data are published in Reisinger et al. (2010). The data were adjusted to 
the baseline period 1997–2007 used in this study, from the original period 1980–1999. The adjustment 
was the difference between the observed (interpolated) average rainfall totals and temperatures of the 
two baseline periods. For some high elevation locations where the observed average temperatures have 
increased markedly between 1980–1999 and 1997–2007, the adjusted projections to 2030–2049 are for 
a decrease in average temperatures of up to 1°C. This is particularly noticeable for the “low emission” B1 
scenario where only moderate temperature increases are projected. Lowland populated areas, which are 
of most interest in this study, have a range of temperature changes from a small decrease (-0.2°C, from 
reference years 2002 to 2040, B1 scenario) to a large increase (+3.7°C, from reference years 2002 to 
2090, A2 scenario). It should be noted that there is inherent uncertainty in predicting the extent of climate 
change.

2.2  Disease selection and data
An extensive ranking process was carried out to select the six indicator diseases (campylobacteriosis, 
cryptosporidiosis, meningococcal disease, influenza, and Ross River and dengue fevers) to be studied for 
the project. The process initially involved reviewing all the New Zealand notifiable diseases and removing 
all vaccine preventable diseases, sexually transmitted infections, blood borne diseases, diseases with 
less than 10 notified cases per year, and those newly added to the notification schedule. The remaining 
diseases were then ranked based on transmission modes, disease burden (morbidity and mortality), 
ethnicity rates, spectral analysis for seasonality, reported correlation with climate (international literature), 
DAISY score, and importation / emerging disease risk. The final step involved input from the Advisory 
Panel, who recommended dropping salmonellosis and including seasonal influenza (hospitalisations) due 
to its public health significance.

De-identified data from 1997 – 2007 for confirmed and probable cases were extracted from New 
Zealand’s national notifiable disease system (EpiSurv) maintained by the Institute of Environmental Science 
and Research Limited on behalf of the Ministry of Health. Influenza (hospitalisations) data were provided 
by the New Zealand Health Information Service. Cases in which the individual was overseas during part of 
the incubation period were not included. Cases were assigned to each of the appropriate VCS grid cells 
before being used in the models (Ethics approval MEC/09/33/EXP).

2.3  Demographic data
Demographic data comprising the count of the population at risk (PAR), the age, gender and ethnicity 
structures were provided by Statistics New Zealand. Population estimates for each census area unit (AU) 
across New Zealand were provided for each year from 1996-2008 as at 30 June of each year. Population 
estimates at 30 June 1996-2000 were based on 2001 area unit boundaries, whereas population estimates 
from 2001 onwards were based on 2006 area unit boundaries. The population in each AU was linearly 
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interpolated using the census years 1996, 2001 and 2006. As ethnicity is self-perceived in New Zealand, 
people can and do identify with more than one ethnicity. Thus ethnicity was assigned, based on the Statistics 
New Zealand classification code hierarchy, to one of the five groups: European or Other Ethnicity (including 
New Zealander), Maori, Pacific Peoples, Asian, or Middle Eastern/Latin American/African.

The AU demographic data were subsequently assigned to each of the appropriate VCS grid cells. As AUs can 
dissect VCS grid boundaries and therefore can overlay with more than one grid cell, it was assumed that the 
population was equally distributed within each AU and thus proportionally assigned to the VCS grid cells. 

The PAR data used in the climate change projection scenarios were based on 2016 projections from Statistics 
New Zealand and were kept constant for the three time periods. The decision not to use projected PAR data 
for 2040 and 2090 was taken as the central objective of the project was to see the relative change climate 
projections may have on current (2002) reported disease rates and due to the large confidence intervals 
inherent in long term population projections.

2.4  Social Deprivation Index
The Social Deprivation Index (NZDep) is a measure of deprivation on an ordinal scale from 1 – 10, developed 
at the Department of Public Health, University of Otago, Wellington (Salmond et al. 1998). A deprivation 
score of 1 represents least deprived, where a deprivation score of 10 represents most deprived. Deprivation 
data were provided for the census years 1996, 2001 and 2006 at the meshblock level. For each year of the 
1997-2007 study period NZDep indexes were assigned to the closest year as NZDep scores are relatively 
stable. Therefore, indexes calculated using 1996 Census were assigned to the years 1997 and 1998, 2001 
Census indexes for 1999, 2000, 2001, 2002 and 2003, and 2006 Census indexes for 2004, 2005, 2006 and 
2007.

The NZDep indexes were subsequently assigned to each of the VCS grid cells. Following the NZDep2006 
user’s manual (Salmond et al. 2007) the assignment was carried out by the deployment of the weighted 
average of NZDep score values, using population counts across all the mesblocks or parts of meshblocks in 
each VCS grid cell. The weighted average for each grid cell was obtained by multiplying each NZDep score 
value by the population number, adding these over all meshblocks in each grid cell, and dividing this total by 
the total population count in each grid cell.

Meshblocks are not coterminous with the VCS grid boundaries. Thus, as was done for the PAR estimations, 
the area proportion of each meshblock within each VCS grid cell to the whole area of the meshblock is 
calculated and multiplied by the population number of the meshblock in order to estimate the population 
of each meshblock part within each grid cell. Grid cells that were predominately oceanic, sea inlets or river 
estuaries and contain very few people in total were omitted from the index and given a deprivation score of 
0. 

The influence that future social deprivation structure may have on the selected diseases in 2015, 2040, 2090 
was not investigated as part of this project.

2.5  Urban/rural classification
The urban/rural profile of each VCS grid cell was identified using the ‘geographic concordance file.xls’ 
obtained from the Statistics New Zealand website. The file contains the 2006 meshblocks classified as one 
of eight categories. For the modelling only the classification either urban or rural was used. Thus, grids 
comprising meshblocks that were predominantly categorised ‘main urban areas’, ‘satellite urban areas’ or 
‘independent urban areas’ were classified as ‘Urban’. Those comprising meshblocks that were predominantly 
‘rural areas with high urban influence’, ‘rural areas with moderate urban influence’, ‘rural areas with low 
urban influence’ and ‘highly rural/remote areas’ were classified as ‘Rural’. Grid cells comprising meshblocks 
that were predominantly categorised ‘area outside urban/rural profile’ were mainly those of inland water 
or water inlets, and were classified as either rural or urban according to their neighbour’s classification. As 
calculated for the PAR data, the proportion of the population living in each part of the AUs per grid cell was 
used to estimate the proportion of the population living in rural and urban parts of each grid.

The influence that future urban/rural profiles may have on the selected diseases in 2015, 2040, 2090 was not 
investigated as part of this project.
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2.6  Land use
Land use data, consisting of the Land Cover Database version 2 (LCDB2), were obtained from the Ministry 
for the Environment. The data for LCDB2 were collected in the summer of 2001/2002, and for statistical 
modelling purposes it was assumed land use remained constant over the 1997-2007 study period. The 
eight first order land classifications were used (Artificial surfaces, Bare Surfaces, Water Bodies, Cropland, 
Grassland, Sedge/Saltmarsh, Scrub, Forrest) with the second order class Mangrove transferred from Forest 
to Sedge/Saltmarsh. The percentage of each first order land classification was assigned to each of the VCS 
grid cells.

The influence that future land use may have on the selected diseases in 2015, 2040, 2090 was not 
investigated as part of this project.

2.7  Animal density
Animal density data were purchased from AsureQuality Pty Ltd as an extract from the AgriBase™ 
database. This is a spatially explicit data set containing voluntary farm holding details including counts of 
animals. Animal counts for each year of the 1997-2007 study period were obtained. Each farm’s centroid 
was assigned to the appropriate VCS grid cell it was contained in, and the total count of dairy cows, beef 
and sheep was then calculated for each grid cell. 

The influence that future animal densities may have on the selected diseases in 2015, 2040, 2090 was not 
investigated as part of this project.

2.8  Water quality
Information on drinking water quality was produced from yearly drinking water quality zone data 
maintained by the ESR Water Programme on behalf of the Ministry of Health. Drinking-water in New 
Zealand is mainly from surface water sources (such as rivers, streams and dams), ground water sources 
(such as bores and wells) and from rainfall (through roof collections). From abstraction points drinking-
water passes through treatment plants before being distributed to consumers through water supply 
zones. The zone code and protozoal compliance was used to construct an annual scoring system for 
drinking water quality in each of the VCS grid cells over the 1997-2007 study period. A grid cell with: a 
drinking water quality score of 0 indicated good drinking water quality (complied); a score of 1 indicated 
intermediate drinking water quality (inadequately monitored); and a score of 2 indicated poor drinking 
water quality (non-compliant and either not monitored or contained E.coli).

The influence that future water quality may have on the selected diseases in 2015, 2040, 2090 was not 
investigated as part of this project.

2.9  District Health Boards
District Health Boards (DHBs) have existed since 2001, and there were 21 DHBs during the 1997-2007 
study period. As the boundaries of the 21 DHB regions did not change from 2001 to 2006 only the 
boundaries of the 2006 dataset were used to identify the DHB to which each VCS grid cell belongs to. In 
cases where a grid cell contained more than one DHB, the cell was assigned the DHB that occupied the 
maximum area within the grid cell. Information on DHBs was provided by the Ministry of Health.

2.10  Vaccination coverage
Information on influenza vaccination coverage was compiled from data provided by the Ministry of 
Health, ESR’s National Influenza Centre and Canterbury Health Laboratories. For the study years 1997-
2003, only total annual national vaccination coverage was available and each VCS grid cell was assigned 
the same vaccination rate per 100,000 people based on New Zealand’s total PAR for each year in 
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question. For years 2004-2007, individual annual DHB vaccination data were available and each grid cell 
per DHB was assigned a vaccination rate per 100,000 people based on the total PAR within the DHB.

National data on meningococcal vaccination coverage was sought, however, the limited data available 
were too coarse a resolution for the study.

2.11  School holidays
Information on school holidays from 1997 – 2007 were based on the “SchoolTermDates1986-2009” 
document provided by the Ministry of Education. The dates defining holidays were those of the secondary 
school terms.Each week of the 11 year period was scored either 1 (holiday week) or 0 (non holiday week). 
A holiday week was defined as a week that contained at least one day of the working week as a holiday. 
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3.  Statistical Models for 
Campylobacteriosis, Cryptosporidiosis, 
Meningococcal disease and Influenza

3.1  Screening
We initially explored the associations of climate variables and confounders with the incidence risk (IR) of 
each disease to inform variable selection for the past association and projection models. The data variables 
(Section 2) were first converted to weekly measurements covering the 1997 – 2007 study period for each of 
the 11,491 VCS grid cells.

The screening was carried out in two phases. Phase One involved the screening of both the climate and 
seasonal terms. Significant associations found in Phase One were then used as a baseline model (B) to which 
possible confounders were added one at a time, to screen for significant associations in Phase Two.

The climate variables selected for the modelling process were average absolute humidity, average 
temperature, and average rainfall. These variables were selected as they were available as projection data for 
2015, 2040 and 2090 from NIWA. The climate data were standardised to produce model coefficients that 
represent the change in IR from an increase of one standard deviation in that variable (Equation 1):

	 (1)

where Zkit is the standardised version of the climate variable Wk, in the grid i, week t; Wk is the mean and 
s.e.(Wk) is the standard error for the climate variable Wk over the 11 year study period.

The VCS grids with no population were excluded from screening. Our screening process used PAR as an 
offset term. This approach models the IR of disease instead of the raw count. The differing population sizes 
across the VCS grid cells and the study period were taken into account by the addition of a log(PARt) term 
added to the right-hand side of the modelling equation (Equation 3). The PAR in each grid must be greater 
than zero otherwise the offset log(PAR) will be undefined. The exclusion of grid cells with no population 
resulted in the exclusion of an average of 23 cells out of 11,491 per year.

For variables with multiple categories (such as DHB and NZDep), the choice of the baseline group was 
by selecting a group that is “typical”. A choice of a baseline group that is rare will cause the coefficient 
estimates of the other groups to be poorly estimated with unrealistic standard errors. In the case of DHB, 
Counties Manukau was set as the baseline as it is a DHB that is representative of a mid-range PAR sized 
DHB in New Zealand. The baseline for NZDep was set to a level of 5. Similarly, with proportion variables 
(age, gender and ethnicity), a baseline category was assigned. For age, the proportion between 4 and 65 
years of age in each grid cell was set as the baseline category. For gender, the proportion of males in each 
grid cell was set as the baseline. For ethnicity, the proportion of European or Other Ethnicity (including New 
Zealander) was set as the baseline. The proportion variables were then standardised using Equation 1. For 
example, in the case of gender this standardization produced a model coefficient that will represent the 
change in incidence risk from an increase of one standard deviation in the proportion of females in the VCS 
grid.

The animal (sheep, beef and dairy) density per km2 was calculated by dividing the count of each animal 
type by the area of each VCS grid cell. This density was standardised using Equation 1. The percentage of 
each category of land use was standardised and the baseline was set as Scrub, as this was the land use type 
with the median overall percentage of land coverage in New Zealand (9.5%). Drinking water quality was 
entered into the model as a factor, with the baseline set to compliant. Rurality was also entered as a factor, 
with urban areas set as the baseline. Influenza vaccination coverage was standardised using Equation 1, to 
produce the standardised rate of influenza vaccination per 100,000 population. School holidays was also 
entered into the model as a factor, where non-holiday weeks were set as the baseline.

Zkit= 
Wkit – vk

s.e.(Wk)
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3.1.1  Statistical considerations
A Poisson generalised linear model (GLM) was used in the screening process to identify any significant 
associations of climate variables and other possible confounders when regressed against the IR of each 
disease. In the Poisson GLM used for screening, the spatial and temporal dependencies of the data were 
unable to be specifically accounted for. However, we did account for this in the subsequent modelling 
phase (Section 3.2).

Overdispersion occurs when the data have greater variability than the mean number of cases at each 
level of the covariates, i.e. the Poisson assumption of equal mean and variance is violated. This is often 
the case when there is correlation in space and time within the data. If overdispersion is evident, a quasi-
Poission GLM is indicated as it has the potential to take into account some of the effects of the spatial and 
temporal structure of the data.

3.1.2  Adjustment for seasonality
To adjust for seasonality in both the outcome (disease) and the explanatory variables, sine and cosine 
variables were added within the Poisson generalised linear model. If not accounted for a spurious 
association might appear purely because both the outcome and explanatory variables are seasonal. The 
sine and cosine variables were created with a period of 52.18 (365.25 days per year/7 days per week) and 
t equal to the week number (1 to 574) spanning from January 1997 to December 2007, as shown below:

	 (2)

3.1.3  Level of significance
The significance of association required to be considered for selection into the past association and 
predictive modelling stages was a p-value ≤ 0.05. A more typical significance level to use during screening 
is p ≤ 0.20, however, as the Poisson GLM model does not adjust for spatial or temporal correlation over 
and above that contained in the covariates, we were conservative in our interpretation of p-values during 
screening. The p-value ≤ 0.05 was selected to reduce the chance of taking variables through to the 
past association modelling stages that are in fact only significant due to the large number of “repeated 
measures” (6,448,316 measures of “one location” derived from the 574 weekly measurements per grid 
with PAR > 0).

3.1.4  Phase One: Screening of climate and seasonal terms
A quasi-Poisson generalised linear model (GLM) was used to screen the three standardised climate 
variables (average absolute humidity, average temperature and average rainfall), along with the seasonal 
terms (sine and cosine). The expected value of the count of disease (Y) is Poisson distributed with a mean 
of μ, as described by:

	 log (µ) = α + β1X1 + β2X2 + β3Z1 + β4Z2 + β5Z3 + log (P AR) 			   (3)

where log(μ) denotes the expected count of disease (Y ); α denotes the intercept; b1 – b5 denote the 
estimated coefficients; X1 and X2 denote the seasonal terms sine and cosine; Z1 denotes the standardised 
weekly average absolute humidity, Z2 denotes the standardised weekly average temperature and Z3 
denotes standardised weekly average rainfall; and log(PAR) denotes the offset of the population at risk 
in each grid cell. As discussed above, the level required to be considered significantly associated with 
the IR of disease was set at p ≤ 0.05. The significant associations were then used to form a base model 
(B), where the effects of possible confounders on the IR of disease was explored one at a time, having 
adjusted for the effects of the variables in the base model.

X1t= sin
52.18
2pt( )

X2t= cos
52.18
2pt( )
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3.1.5  Phase Two: Screening of possible confounders
Significant associations found in Phase One were used as a baseline model, denoted as B, to which 
possible confounders were added one at a time to screen for significant associations:

log (µ) ∼ α + B + β6Z4 + ... + βkZk + log (P AR) 				    (4)

where log(μ) denotes the expected count of disease (Y); α denotes the intercept; B denotes the baseline 
model from Phase One containing the significant associations with climate and seasonal variables;  
b6 – bk denote the estimated coefficients; Z4+...+Zk denote the categories within each possible confounder 
screened one at a time; and log (PAR) is the offset.

3.1.6  Screening results
During Phase One, overdispersion was found to occur in all four disease models, hence quasi-Poisson 
GLMs were used in both the Phase One and Two screening.

Campylobacteriosis

In Phase One, the climate variables found to be significantly associated with the IR of campylobacteriosis 
in New Zealand were the average absolute humidity (b3=-0.0227, s.e.=0.0059, p-value=0.000), average 
rainfall (b4=0.0505, s.e.=0.0075, p-value=0.000), and average temperature (b5=0.0284, s.e.=0.0071, 
p-value=0.000). The sine (b1=-0.2110, s.e.=0.0043, p-value=0.000) term was significant, and the cosine 
was not (b2=0.0047, s.e.=0.0055, p-value=0.392).

An example interpretation of the Phase One screening results for campylobacteriosis can be illustrated 
using the weekly average absolute humidity (b3=-0.0227). For an increase of one standard deviation 
in the weekly average absolute humidity in grid cell i, the model predicts that the expected IR of 
campylobacteriosis in that cell changes by a factor of 0.9775(= e−0.0227), when the effects of the other 
climate and seasonal covariates are held constant. However, it is important not to over-interpret these 
screening results, they are not adjusted for the effect of other confounders.

The significant demographic confounders during Phase Two, entered in with the baseline model one 
confounder at a time, were found to be age, DHB, ethnicity, gender and NZDep, having adjusted for 
the affect of the baseline model (Table 1). The significant environmental confounders were found to be 
animal density, drinking water quality and land use (Table 2). School holiday week was also found to be 
significantly associated with the IR of campylobacteriosis, having adjusted for the effect of the baseline 
model (bk=0.0549, s.e.=0.0052, p-value=0.000). Rurality was not significant at screening during Phase 
Two.

To illustrate the interpretation of the Phase Two screening results, consider the demographic confounder 
gender. For each one standard deviation increase in the proportion of females in VCS grid cell i 
(b5=0.7335), the quasi-Poisson GLM suggests that the IR of campylobacteriosis in that cell changes by 
a factor of 2.082 (= e0.7335), assuming all climate and seasonal covariates in the baseline model are held 
constant. Again it is important not to over-interpret these screening results.

Cryptosporidiosis

In Phase One, the weather variables found to be significantly associated with the IR of cryptosporidiosis 
in New Zealand were the average weekly rainfall (b4=-0.1331, s.e.=0.0331, p-value=0.000) and average 
temperature (b5=-0.3695, s.e.=0.0426, p-value=0.000). Both the sine (b1=-0.6852, s.e.=0.0231, 
p-value=0.000) and cosine (b2=-0.1730, s.e.=0.0293, p-value=0.000) terms were significant. Average 
absolute humidity was not significant (b3=0.0214, s.e.=0.0359, p-value=0.550).

The significant demographic confounders during Phase Two were found to be age, DHB, ethnicity, gender 
and NZDep, having adjusted for the affect of the baseline model (Table 3). The environmental confounders 
were significant for most of the Categories (Table 4). School holiday week was not significant at screening 
during Phase Two (bk=-0.0292, s.e.=0.0279, p-value=0.295).
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Meningococcal disease

In Phase One, the weather variables found to be significantly associated with the IR of meningococcal 
disease in New Zealand were the average absolute humidity (b3=0.2324, s.e.=0.0340, p-value=0.000) 
and average temperature (b5=-0.1279, s.e.=0.0375, p-value=0.001). The cosine term (b2=-0.4863, 
s.e.=0.0202, p-value=0.000) was significant, and the sine (b1=0.0360, s.e.=0.0207, p-value=0.075) term 
was not. Average weekly rainfall was not significant (b4=0.0283, s.e.=0.0261, p-value=0.278).

The significant demographic confounders during Phase Two were age, DHB, ethnicity, and gender, having 
adjusted for the affect of the baseline model (Table 5). The significant environmental confounders were 
found to be beef and sheep density, drinking water quality, land use and rurality (Table 6). School holiday 
week was significant at screening during Phase Two (bk=-0.0700, s.e.=0.0262, p-value=0.008).

Influenza Hospitalisations

In Phase One, the weather variables found to be significantly associated with the IR of influenza 
hospitalisations in New Zealand were the average absolute humidity (b3=-0.4873, s.e.=0.0346, 
p-value=0.000) and average temperature (b5=-0.0868, s.e.=0.0423, p-value=0.040). Both the sine (b1=
0.3928, s.e.=0.0239, p-value=0.000) and cosine (b2=-1.1434, s.e.=0.0330, p-value=0.000) terms were 
significant. Average weekly rainfall was not significant (b4=-0.0358, s.e.=0.0292, p-value=0.221).

The significant demographic confounders during Phase Two were less than 4 years, DHB, ethnicity and 
gender, having adjusted for the effect of the baseline model (Table 7). The significant environmental 
confounders were found to be animal density, drinking water quality, land use and rurality (Table 8). 
Influenza vaccination coverage (bk=0.0805, s.e.=0.0070, p-value=0.000) and school holiday weeks 
(bk=0.1345, s.e.=0.0176, p-value=0.000) were also found to be significantly associated with the IR of 
influenza hospitalisations, having adjusted for the effect of the baseline model.
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TABLE 1: CAMPYLOBACTERIOSIS PHASE TWO SCREENING RESULTS (DEMOGRAPHIC 
CONFOUNDERS)

Demographic Confounder Categories bk s.e. (bk) p-value

Age Group (baseline 4 to 65 Less than 4 Years -13.9228 0.2259 0.000 
years of age) Over 65 Years -2.6674 0.0902 0.000 
DHB (baseline Northland 0.6461 0.0176 0.000 
Counties Manukau) Waitemata 0.5931 0.0183 0.000 

Auckland 0.4075 0.0180 0.000 
Waikato 0.6015 0.0180 0.000 
Lakes 0.3000 0.0213 0.000 
Bay of Plenty 0.2119 0.0191 0.000 
Tairawhiti -0.0344 0.0321 0.284 
Taranaki 0.5092 0.0226 0.000 
Hawke’s Bay 0.1837 0.0236 0.000 
Whanganui 0.3138 0.0266 0.000 
Mid Central 0.0675 0.0226 0.003 
Hutt Valley 0.7586 0.0203 0.000 
Capital & Coast 0.9735 0.0175 0.000 
Wairarapa 0.0535 0.0300 0.075 
Nelson-Melborough 0.0834 0.0224 0.000 
West Coast 0.3557 0.0304 0.000 
Canterbury 0.6895 0.0185 0.000 
South Canterbury 1.0251 0.0218 0.000 
Otago 0.7211 0.0191 0.000 
Southland 0.6343 0.0220 0.000 

Ethnicity (baseline European Maori -1.8364 0.0455 0.000 
or Other (Including New Pacific Islander -1.6052 0.0521 0.000 
Zealander)) Asian 0.4960 0.0543 0.000 

Middle Eastern/Latin
American/African 5.1159 0.3401 0.000 

Gender (baseline Male) Female 0.7335 0.2271 0.001 
NZDep (baseline 5) NZDep Score of 0 1.1690 0.1349 0.000 

NZDep Score of 1 1.0244 0.1350 0.000 
NZDep Score of 2 1.0767 0.1348 0.000 
NZDep Score of 3 1.1191 0.1348 0.000 
NZDep Score of 4 1.0311 0.1348 0.000 
NZDep Score of 6 0.8453 0.1347 0.000 
NZDep Score of 7 0.8958 0.1346 0.000 
NZDep Score of 8 0.8518 0.1346 0.000 
NZDep Score of 9 0.7716 0.1346 0.000 
NZDep Score of 10 0.3998 0.1347 0.003 
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TABLE 2: CAMPYLOBACTERIOSIS PHASE TWO SCREENING RESULTS (ENVIRONMENTAL 
CONFOUNDERS)

Environmental Confounder Categories bk s.e. (bk) p-value

Animal Density Beef Density -0.0953 0.0046 0.000 
Dairy Density 0.0383 0.0030 0.000 
Sheep Density 0.0901 0.0060 0.000 

Drinking Water Quality Intermediate -0.1291 0.0066 0.000 
(baseline Good) Poor -0.1324 0.0056 0.000 

Quality Unknown -0.2880 0.0053 0.000 
Land Use (baseline Scrub) Artificial Surfaces -0.6574 0.0365 0.000 

Bare Surfaces -0.5489 0.4256 0.197 
Water Bodies -0.7907 0.0920 0.000 
Cropland -1.1552 0.0537 0.000 
Grassland -0.7401 0.0363 0.000 
Sedge/Saltmarsh -8.9560 0.5545 0.000 
Forest -0.9637 0.0556 0.000 

Rurality (baseline Urban) Rural -0.0090 0.0062 0.149 
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TABLE 3: CRYPTOSPORIDIOSIS PHASE TWO SCREENING RESULTS (DEMOGRAPHIC 
CONFOUNDERS)

Demographic Confounder Categories bk s.e. (bk) p-value

Age Group (baseline 4 to 65 Less than 4 Years 2.2596 0.8578 0.008 
years of age) Over 65 Years 2.2081 0.3273 0.000 
DHB (baseline Northland -0.6196 0.0936 0.000 
Counties Manukau) Waitemata -0.7221 0.1007 0.000 

Auckland -0.5347 0.0936 0.000 
Waikato 1.0923 0.0786 0.000 
Lakes 0.5758 0.0946 0.000 
Bay of Plenty -0.1604 0.0959 0.094 
Tairawhiti 0.2275 0.1333 0.088 
Taranaki -0.0030 0.1150 0.979 
Hawke’s Bay 0.5540 0.0935 0.000 
Whanganui 0.3981 0.1152 0.001 
Mid Central 0.7236 0.0886 0.000 
Hutt Valley 0.8294 0.0899 0.000 
Capital & Coast 0.5701 0.0831 0.000 
Wairarapa 0.5087 0.1214 0.000 
Nelson-Melborough -0.1866 0.1092 0.088 
West Coast 1.0431 0.1154 0.000 
Canterbury 0.3668 0.0840 0.000 
South Canterbury 1.3752 0.0935 0.000 
Otago 0.4429 0.0906 0.000 
Southland 0.7489 0.0962 0.000 

Ethnicity (baseline European Maori -0.9174 0.1363 0.000 
or Other (Including New Pacific Islander -2.6720 0.2672 0.000 
Zealander)) Asian -5.4939 0.4109 0.000 

Middle Eastern/Latin
American/African -13.6698 4.6665 0.003 

Gender (baseline Male) Female -13.3064 0.4170 0.000 
NZDep (baseline 5) NZDep Score of 0 3.2242 1.2733 0.011 

NZDep Score of 1 3.0318 1.2735 0.017 
NZDep Score of 2 2.8370 1.2733 0.026 
NZDep Score of 3 2.8780 1.2733 0.024 
NZDep Score of 4 2.9073 1.2732 0.022 
NZDep Score of 6 2.7711 1.2729 0.030 
NZDep Score of 7 2.6715 1.2727 0.036 
NZDep Score of 8 2.6121 1.2726 0.040 
NZDep Score of 9 2.5322 1.2726 0.047 
NZDep Score of 10 2.3487 1.2730 0.065 
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TABLE 4: CRYPTOSPORIDIOSIS PHASE TWO SCREENING RESULTS (ENVIRONMENTAL 
CONFOUNDERS)

Environmental Confounder Categories bk s.e. (bk) p-value

Animal Density Beef Density 0.0258 0.0138 0.061 
Dairy Density 0.2721 0.0083 0.000 
Sheep Density 0.3706 0.0141 0.000 

Drinking Water Quality Intermediate 0.1558 0.0354 0.000 
(baseline Good) Poor 0.0595 0.0311 0.056 

Quality Unknown 0.1325 0.0277 0.000 
Land Use (baseline Scrub) Artificial Surfaces -1.6104 0.1006 0.000 

Bare Surfaces -1.5102 0.5638 0.007 
Water Bodies 0.3084 0.1964 0.116 
Cropland -0.5747 0.1271 0.000 
Grassland 0.0751 0.0940 0.424 
Sedge/Saltmarsh -8.6878 1.2764 0.000 
Forest -1.0822 0.1338 0.000 

Rurality (baseline Urban) Rural 0.4880 0.0227 0.000 
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TABLE 5: MENINGOCOCCAL DISEASE PHASE TWO SCREENING RESULTS (DEMOGRAPHIC 
CONFOUNDERS)

Demographic Confounder Categories bk s.e. (bk) p-value

Age Group (baseline 4 to 65 Less than 4 Years 28.4962 1.1923 0.000 
years of age) Over 65 Years -1.4441 0.6059 0.017 
DHB (baseline Northland -0.8508 0.0664 0.000 
Counties Manukau) Waitemata -0.3583 0.0630 0.000 

Auckland 0.2117 0.0563 0.000 
Waikato -0.5225 0.0652 0.000 
Lakes -0.0719 0.0738 0.330 
Bay of Plenty -0.4480 0.0691 0.000 
Tairawhiti -0.3386 0.1113 0.002 
Taranaki -1.0275 0.1083 0.000 
Hawke’s Bay -0.4787 0.0831 0.000 
Whanganui -0.7559 0.1160 0.000 
Mid Central -1.1001 0.0951 0.000 
Hutt Valley -0.9517 0.0961 0.000 
Capital & Coast -1.3308 0.0828 0.000 
Wairarapa -0.5928 0.1209 0.000 
Nelson-Melborough -1.8284 0.1313 0.000 
West Coast -1.0278 0.1631 0.000 
Canterbury -1.3235 0.0800 0.000 
South Canterbury -1.1926 0.1377 0.000 
Otago -0.3982 0.0757 0.000 
Southland -0.9249 0.1025 0.000 

Ethnicity (baseline European Maori 2.3727 0.1217 0.000 
or Other (Including New Pacific Islander 3.8812 0.1173 0.000 
Zealander)) Asian -2.2212 0.2958 0.000 

Middle Eastern/Latin
American/African 4.7076 2.2160 0.034 

Gender (baseline Male) Female 7.6915 1.5075 0.000 
NZDep (baseline 5) NZDep Score of 0 -0.0223 0.5298 0.966 

NZDep Score of 1 -0.1279 0.5306 0.810 
NZDep Score of 2 -0.1461 0.5270 0.782 
NZDep Score of 3 -0.2293 0.5281 0.664 
NZDep Score of 4 -0.0466 0.5262 0.929 
NZDep Score of 6 0.0477 0.5237 0.927 
NZDep Score of 7 0.0442 0.5224 0.933 
NZDep Score of 8 0.6270 0.5213 0.229 
NZDep Score of 9 0.6047 0.5212 0.246 
NZDep Score of 10 1.2708 0.5212 0.015 
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TABLE 6: MENINGOCOCCAL DISEASE PHASE TWO SCREENING RESULTS (ENVIRONMENTAL 
CONFOUNDERS)

Environmental Confounder Categories bk s.e. (bk) p-value

Animal Density Beef Density 0.0417 0.0177 0.018 
Dairy Density -0.0121 0.0134 0.366 
Sheep Density -0.1943 0.0313 0.000 

Drinking Water Quality Intermediate 0.3659 0.0308 0.000 
(baseline Good) Poor 0.1276 0.0280 0.000 

Quality Unknown 0.0901 0.0256 0.000 
Land Use (baseline Scrub) Artificial Surfaces 1.2035 0.1634 0.000 

Bare Surfaces -29.2027 3.0710 0.000 
Water Bodies 2.3989 0.2698 0.000 
Cropland 1.0052 0.2057 0.000 
Grassland 0.9422 0.1638 0.000 
Sedge/Saltmarsh 4.5611 1.1488 0.000 
Forest 0.4263 0.2204 0.053 

Rurality (baseline Urban) Rural -0.0539 0.0253 0.033 
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TABLE 7: INFLUENZA PHASE TWO SCREENING RESULTS (DEMOGRAPHIC CONFOUNDERS)

Demographic Confounder Categories bk s.e. (bk) p-value

Age Group (baseline 4 to 65 Less than 4 Years 5.6546 0.9262 0.000 
years of age) Over 65 Years 0.1548 0.3464 0.655 
DHB (baseline Northland -0.9398 0.0626 0.000 
Counties Manukau) Waitemata -0.4360 0.0603 0.000 

Auckland -0.5416 0.0571 0.000 
Waikato -0.5702 0.0575 0.000 
Lakes -1.8049 0.0946 0.000 
Bay of Plenty -0.2472 0.0556 0.000 
Tairawhiti -0.0038 0.0795 0.962 
Taranaki -1.4879 0.1084 0.000 
Hawke’s Bay -1.0255 0.0838 0.000 
Whanganui -1.2093 0.1085 0.000 
Mid Central -1.9968 0.1077 0.000 
Hutt Valley -1.7330 0.1047 0.000 
Capital & Coast -1.0577 0.0629 0.000 
Wairarapa -1.5422 0.1265 0.000 
Nelson-Melborough -0.6173 0.0662 0.000 
West Coast -0.0169 0.0795 0.831 
Canterbury 0.1088 0.0560 0.052 
South Canterbury -0.8492 0.0818 0.000 
Otago -1.1878 0.0678 0.000 
Southland -1.9846 0.1047 0.000 

Ethnicity (baseline European Maori 0.8886 0.1262 0.000 
or Other (Including New Pacific Islander 1.2998 0.1600 0.000 
Zealander)) Asian 1.3906 0.3025 0.000 

Middle Eastern/Latin
American/African -0.4437 3.6835 0.904 

Gender (baseline Male) Female 5.3620 0.9871 0.000 
NZDep (baseline 5) NZDep Score of 0 10.2560 49.5517 0.836 

NZDep Score of 1 10.5751 49.5517 0.831 
NZDep Score of 2 10.6008 49.5517 0.831 
NZDep Score of 3 10.8169 49.5517 0.827 
NZDep Score of 4 10.6342 49.5517 0.830 
NZDep Score of 6 10.9660 49.5517 0.825 
NZDep Score of 7 11.1001 49.5517 0.823 
NZDep Score of 8 10.8353 49.5517 0.827 
NZDep Score of 9 11.1118 49.5517 0.823 
NZDep Score of 10 11.3088 49.5517 0.819 
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TABLE 8: INFLUENZA PHASE TWO SCREENING RESULTS (ENVIRONMENTAL CONFOUNDERS)

Environmental Confounder Categories bk s.e. (bk) p-value

Animal Density Beef Density 0.0839 0.0163 0.000 
Dairy Density -0.1089 0.0156 0.000 
Sheep Density -0.4109 0.0313 0.000 

Drinking Water Quality Intermediate 0.1679 0.0259 0.000 
(baseline Good) Poor 0.2511 0.0226 0.000 

Quality Unknown -0.1463 0.0239 0.000 
Land Use (baseline Scrub) Artificial Surfaces 1.8144 0.1244 0.000 

Bare Surfaces 1.4535 0.5373 0.007 
Water Bodies 1.2776 0.2336 0.000 
Cropland 1.6095 0.1464 0.000 
Grassland 1.2666 0.1228 0.000 
Sedge/Saltmarsh 4.3744 0.8698 0.000 
Forest 1.4459 0.1601 0.000 

Rurality (baseline Urban) Rural -0.3207 0.0283 0.000 

3.2  Past association models
Following screening we modelled the effect of past climate variation on the four indicator diseases 
while adjusting for the effects of demographic and environmental confounders. These models produced 
adjusted regression coefficients that were subsequently coupled with NIWA’s climate projection data 
(Section 3.3) to project the possible future burden of the four indicator diseases. 

Many issues arose due to the number of variables to consider, the spatial and temporal dependency in the 
data and the sheer size of the dataset. The length of time for each iteration to be completed increased 
linearly with the number of variables entered into the model. With the number of iterations required for 
convergence in the order of 10,000, this proved to be a timely exercise with a corresponding high demand 
for computing resources. For this reason we decided not to use the traditional step-wise methods for 
model building. Instead we used a combination of screening results and expert opinion on epidemiological 
plausibility to determine which confounding variables to use for each model.

The format for the variables used in the past association models were the same as that for the screening 
process. The only exception was that the demographic variable NZDep was entered as a linear predictor 
in the past association models. During the screening process, NZDep was entered into the quasi-Poisson 
GLM models for each disease as a factor with 10-levels and the baseline a grid score of 5. During an 
examination of the screening results, it was noted that NZDep appeared to have a linear effect on the 
association of disease and therefore decided that NZDep would be entered as a linear variable in the past 
association models. This also assisted to some degree with the issues regarding the number of variables 
raised above. 

3.2.1  Variable selection
Variable selection for each of the models investigating the association between past climate variation 
and the four indicator diseases in New Zealand occurred in two steps. In the first step, the climate and 
other possible confounding variables were screened, as described previously. All those significant were 
included. Due to the issues raised above we needed to restrict each model to a maximum of eight 
variables. Therefore our second step involved expert opinion to rank the possible confounding variables 
identified during screening from those most likely to those least likely to be significantly associated with 
the IR of each indicator disease. Those deemed most likely were selected. In situations where both rurality 
and animal density were found to be significant during screening, it was decided that rurality would be 
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used as a proxy for the animal density in each CVS grid cell. Using rurality as a proxy for all three animal 
densities allowed the inclusion of more confounding variables. Furthermore, the limit on the number of 
explanatory variables resulted in the decision that district health board (DHB) would not be included in 
any past association model, as it is a factor consisting of 20 categories. We reasoned that any effect of 
DHB would likely act through differences in notification practice and that this may be seen in a map of the 
posterior-spatial term (Ui) produced as an output of each model.

The use of expert opinion alongside the screening results, suggested the following climate and 
confounding variables be included in the past association models for each disease:

•	 �Campylobacteriosis: average absolute humidity, average rainfall, average temperature, age, animal 
density, drinking water quality, ethnicity and NZDep.

•	 �Cryptosporidiosis: average rainfall, average temperature, age, drinking water quality, ethnicity, rurality 
and NZDep.

•	 �Influenza Hospitalisations: average absolute humidity, average temperature, age, ethnicity, influenza 
vaccination coverage, rurality and NZDep.

•	 �Meningococcal Disease: average absolute humidity, average temperature, age, ethnicity, rurality and 
NZDep.

3.2.2 	Modifying the Knorr-Held Richardson model
A Bayesian hierarchical model was developed by Leonhard Knorr-Held and Sylvia Richardson to analyse 
space-time surveillance data on meningococcal disease incidence in France. The Knorr-Held Richardson 
model contains latent parameters that capture temporal, seasonal and spatial trends in meningococcal 
disease incidence for endemic periods, by decomposing the log-relative-risks of disease (log(λit)) into three 
components, as seen in Equation 5:

log(λit) = Rt + St + Ui								        (5)

where λit is assumed to be Poisson distributed with mean eitλit, where eit is the number of expected cases; 
Rt denotes the temporal component; St denotes the seasonal component; and Ui denotes the spatial 
component.

For this project Dr. Simon Spencer of Warwick University worked with us to modify the Knorr-Held 
Richardson model to incorporate linear explanatory covariates, whilst removing the seasonal component 
(Equation 6). The seasonal term took into account weekly cyclicity, where it was assumed that notifications 
occur only during week days and not on the weekend. However, for this project, weekly data are used, so 
we do not experience the same “day of the week” issue. As for longer term seasonality, with 52 weeks 
per year, the temporal random effect Rt should absorb any seasonal variation and overall trend that the 
fixed effects don’t account for. The form of the model used for this project follows:

log(λit) = α + Rt + Ui + β1Z1it + ... + βkZkit + log(PARit)				    (6)

where λit is the rate of disease notification in grid cell i during week t; α is the intercept representing 
the average per-person risk over New Zealand (assuming covariates at baseline); Rt is the temporal 
component; Ui is the spatial component; β1 + ... + βk are the posterior coefficient estimates; Z1it + ... + Zkit are 
explanatory variables, such as climate or animal density; and log(PARit) is the offset of the population at 
risk in each grid i for week t.

As with the Knorr-Held Richardson model, the temporal component (Rt) assumes a Gaussian second-
order random walk prior, i.e. the change in log-incidence-risk from week t to week t + 1 will be similar 
to the change in risk from week t − 1 to week t. In regards to the spatial component (Ui), an intrinsic 
Gaussian Markov random field prior was used, whereby it ensured that grid i took the average value of its 
surrounding grids. Further technical details on the model can be found in Marshall et al. (2009).



MODELLING THE HEALTH IMPACTS OF CLIMATE CHANGE 19

3.2.3 	Past association models
A queen neighbourhood adjacency matrix was used to model the spatial correlation between grid cell i 
and its immediate neighbours. Grids with no population (i.e. PARit=0) did not contribute to the likelihood. 
The fixed effect (fe) is the baseline or intercept, representing the log IR when all covariates are at their 
default values. The starting values for the fixed effect were estimated as the average IR of each disease per 
week. These differed between diseases and were calculated using the equation:

										         (7)

where fe denotes the fixed effect; N denotes the average total number of cases of each disease per year 
over the study period; and PAR denotes the total population at risk in New Zealand. The resulting starting 
values were:

•	 Campylobacteriosis fe = -11.

•	 Cryptosporidiosis fe = -13.

•	 Meningococcal disease fe = -14.

•	 Influenza hospitalisations fe = -12.

Each model was run for 10,000 iterations sampling every 10th iteration, after an initial burn-in of 500. 
The posterior coefficient estimate (β�k) were derived as the median of the posterior distribution of βk. These 
coefficient estimates are combined with the climate projection data in Section 3.3 for future disease 
projections. The 95% credible interval (C.I.) for each posterior coefficient estimate (βk) corresponding 
to each explanatory variable (Zkit) were calculated as the 2.5th and 97.5th percentiles of the βk posterior 
distributions. The multiplicative effect of a one standard deviation change in each climate or confounding 
variable on the IR of each indicator disease, having adjusted for the effects of other covariates is given by 
Equation 8.

	 Δλit = eβ�k								        (8)

where Δλit denotes the change in rate of disease notification in grid cell i during week t; and β�k denotes 
the posterior coefficient estimate of each covariate Zkit. A value of p≤0.05 was set to determine statistical 
significance. A visual appraisal of the posterior spatial effects (Ui) for each grid cell i, was undertaken to 
check if there were any spatial patterns. These may relate to unaccounted effects beyond the climate and 
confounding variables such as differing notification patterns by DHB or population density.

3.2.4  Past association model results
Campylobacteriosis

The weekly average absolute humidity in grid cell i and week t was significantly associated with the 
probability of disease notification, having adjusted for the effects of other covariates in the model 
(β�1=0.143, p-value=0.000). It follows that for an increase of one standard deviation in the weekly average 
absolute humidity in grid cell i, the expected rate of campylobacteriosis notification in that grid changes 
by a factor of 1.154 (Δλit = e0.143), when all other variables are held constant.

The confounders significantly associated with the probability of a notified case of campylobacteriosis in 
grid cell i in week t follow:

•	 �age: a negative association with the proportion aged less than four years (β�4=-0.067, p-value=0.008)
and a positive association with the proportion aged over sixty-five years (β�5=0.183, p-value=0.000)

•	 beef density: a positive association (β�6=0.031, p-value=0.011)

•	 dairy density: a positive association (β�7=0.042, p-value=0.000)

•	 �drinking water quality: positive associations with intermediate quality (β�9=0.056, p-value=0.000) and 
poor quality (β�10=0.089, p-value=0.000)

fe = log
52xPAR

N( )
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•	 �ethnicity: a negative association with the proportion in each grid cell who identify with Maori ethnicity 
(β�11=-0.404, p-value=0.000); a positive association with the proportion who identify with Pacific 
Islander ethnicity (β�13=0.063, p-value=0.002) and the proportion who identify with Asian ethnicity 
(β�14=0.024, p-value=0.002).

For more detailed results for the past association modelling of campylobacteriosis, see Table 9.

An example of the interpretation of the effect of confounders on the probability of a case notification can 
be illustrated with the proportion of those aged less than four years in grid cell i. The posterior coefficient 
estimate, β�4=-0.067, defines the magnitude of the multiplicative change in the probability of notification 
and is given by Δλit = e−0.067 = 0.935. For one standard deviation increase in the proportion of those 
aged less than four years the rate of notified cases of campylobacteriosis changes by a factor of 0.935, 
assuming all other covariates remain constant (p-value=0.008). The 95% credible interval states that we 
are 95% sure the true change in rate of notified cases lies between 0.908 and 0.972. This infers that an 
increase in the proportion of those aged less than four years in grid cell i slightly decreases the rate of 
notified cases of campylobacteriosis in that grid cell.

An example of how this can be applied to the weekly IR of campylobacteriosis in New Zealand can be 
illustrated with the use of VCS grid cell 30341 located in Manawatu. The proportion aged less than four 
years old in 2007 was approximately 6.8%, the average weekly IR of notified campylobacteriosis was 0.52 
cases, and the PAR residing in the grid was approximately 13109 people. An increase of one standard 
deviation in the proportion of those aged less than four years in 2007 to 8.9%, suggests that the weekly 
campylobacteriosis IR will change by a factor of 0.935, resulting in an average of 0.49 notified cases per 
week. The 95% credible interval estimates the true number of weekly notified cases would lie within the 
range of 0.47 and 0.51 notified cases. 

Cryptosporidiosis

Weekly average temperature and rainfall were significantly associated with the probability of disease 
notification, having adjusted for the effects of other covariates in the model (β�1=-0.094, p-value=0.002; 
and β�2=0.124, p-value=0.004, respectively). An increase of one standard deviation in the average weekly 
temperature in grid cell i results in a change of the rate of cryptosporidiosis notifications by a factor of 
0.910 (i.e. Δλit = e−0.094), when all other covariates are held constant. For an increase of one standard 
deviation in weekly average rainfall in grid cell i, the rate of cryptosporidiosis notifications changes by a 
factor of 1.132 (Δλit = e0.124), once again when all other covariates are held constant.

The confounders significantly associated with the probability of a notified case of cryptosporidiosis follow:

•	 �drinking water quality: a positive association with poor quality (β�6=0.102, p-value=0.048) and a 
negative association with unknown quality (β�7=-0.350, p-value=0.002)

•	 �ethnicity: a negative association with the proportion in each grid cell who identify with Maori ethnicity 
(β�8=-0.340, p-value=0.000)

•	 �rurality: a positive association with living in rural areas (β�12=0.451, p-value=0.000).

For both campylobacteriosis and cryptosporidiosis NZDep was not significant in the final multivariable 
model. For more detailed results for the past association modelling of cryptosporidiosis, see Table 10.

Meningococcal Disease

There were no climate variables significantly associated with meningococcal disease in New Zealand, 
having adjusted for the effects of other covariates in the model. The variables significantly associated with 
the notification of meningococcal disease follow:

•	 �age: a positive association with the proportion aged less than four years in each grid cell (β�3=0.133, 
p-value=0.017)

•	 �ethnicity: a positive association with the proportion in each grid cell who identify with Maori ethnicity 
(β�5=0.169, p-value=0.000) and a negative association with the proportion who identify with Asian 
ethnicity (β�7=-0.079, p-value=0.044)
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•	 �NZDep: a positve association with the social deprivation index score of the grid cell (β�10=0.226, 
p-value=0.000).

For more detailed results for the past association modelling of meningococcal disease see Table 11.

Influenza Hospitalisations

No climate variables were significantly associated with influenza hospitalisations in New Zealand, having 
adjusted for the effects of other covariates in the model. The proportion who identify with Maori 
ethnicity in grid cell i was the only confounder found to be significantly associated with the probability of 
hospitalisation where influenza was the primary diagnosis in New Zealand (β�5=0.197, p-value=0.008). 

For more detailed results for the past association modelling of influenza hospitalisations see Table 12.

TABLE 9: CAMPYLOBACTERIOSIS PAST ASSOCIATION MODELLING RESULTS

Explanatory Variable, Zi β�k eβ�k (95% C.I.) p-value

Average Absolute Humidity 0.143 1.154 (1.135,1.173) 0.000
Average Rainfall 0.007 1.007 (0.991, 1.022) 0.387
Average Temperature 0.012 1.012 (0.978,1.064) 0.505
Aged < 4 Years -0.067 0.935 (0.908,0.972) 0.008
Aged > 65 Years 0.183 1.201 (1.100,1.326) 0.000
Beef Density 0.031 1.032 (1.012,1.051) 0.011
Dairy Density 0.042 1.043 (1.017,1.073) 0.000
Sheep Density 0.006 1.006 (0.968,1.036) 0.678
Intermediate Drinking Water Quality 0.056 1.057 (1.028,1.094) 0.000
Poor Drinking Water Quality 0.089 1.093 (1.062,1.135) 0.000
Unknown Drinking Water Quality 0.048 1.051 (0.994,1.190) 0.080
Maori -0.404 0.667 (0.611,0.887) 0.000
Pacific Islander 0.063 1.065 (1.007,1.106) 0.002
Asian 0.024 1.024 (1.005,1.069) 0.002
Middle Eastern/Latin American/African 0.027 1.027 (0.993,1.066) 0.131
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TABLE 10: CRYPTOSPORIDIOSIS PAST ASSOCIATION MODELLING RESULTS

Explanatory Variable, Zi β�k eβ�k (95% C.I.) p-value

Average Rainfall -0.094 0.910 (0.864,0.958) 0.002
Average Temperature 0.124 1.132 (1.047,1.214) 0.004
Aged < 4 Years 0.162 1.175 (1.095,1.258) 0.000
Aged > 65 Years -0.029 0.971 (0.899,1.032) 0.362
Intermediate Drinking Water Quality 0.069 1.072 (0.980,1.178) 0.149
Poor Drinking Water Quality 0.102 1.108 (1.003,1.219) 0.048
Unknown Drinking Water Quality -0.350 0.705 (0.619,0.811) 0.002
Maori -0.340 0.711 (0.636,0.831) 0.000
Pacific Islander 0.003 1.003 (0.955,1.065) 0.987
Asian 0.015 1.015 (0.987,1.043) 0.392
Middle Eastern/Latin American/African -0.029 0.971 (0.856,1.068) 0.731
Rural 0.451 1.570 (1.280,1.868) 0.000
NZDep (baseline 0) 0.020 1.020 (0.945,1.104) 0.644

TABLE 11: MENINGOCOCCAL DISEASE PAST ASSOCIATION MODELLING RESULTS

Explanatory Variable, Zi β�k eβ�k (95% C.I.) p-value

Average Absolute Humidity 0.048 1.049 (0.970,1.153) 0.257
Average Temperature -0.117 0.889 (0.778,1.070) 0.166
Aged < 4 Years 0.133 1.142 (1.030,1.256) 0.017
Aged > 65 Years -0.004 0.996 (0.930,1.072) 0.983
Maori 0.169 1.185 (1.056,1.336) 0.000
Pacific Islander 0.000 1.000 (0.986,1.016) 0.989
Asian -0.079 0.924 (0.901,0.996) 0.044
Middle Eastern/Latin American/African 0.024 1.024 (0.931,1.080) 0.472
Rural 0.075 1.077 (0.892,1.316) 0.450
NZDep (baseline 0) 0.226 1.254 (1.149,1.370) 0.000

TABLE 12: INFLUENZA PAST ASSOCIATION MODELLING RESULTS

Explanatory Variable, Zi β�k eβ�k (95% C.I.) p-value

Average Absolute Humidity 0.046 1.047 (0.757,1.123) 0.918
Average Temperature -0.127 0.88 (0.776,1.118) 0.541
Aged < 4 Years 0.140 1.151 (0.915,1.234) 0.297
Aged > 65 Years 0.008 1.008 (0.926,1.311) 0.528
Maori 0.197 1.218 (1.076,1.602) 0.008
Pacific Islander -0.007 0.993 (0.809,1.073) 0.756
Asian -0.081 0.922 (0.891,1.063) 0.815
Middle Eastern/Latin American/African 0.025 1.026 (0.806,1.074) 0.960
Influenza Vaccination Coverage 0.025 1.026 (0.860,1.082) 0.918
Rural 0.077 1.079 (0.318,1.284) 0.743
NZDep (baseline 0) 0.215 1.24 (0.993,1.375) 0.067
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3.2.5  Posterior spatial effects
The posterior spatial effects (Ui) from 1997 - 2007 for all disease models are shown in Figure 1. To 
facilitate visual comparison the legend has been standardised across all four diseases with the breaks 
represent approximate terciles of the data. The spatial random effects represent the grid level disease 
risk beyond those fitted by the fixed effects and other terms in the model. The aggregations of positive 
sign spatial effects (blue) indicate areas where there was more disease incidence in the data than the 
other model terms predicted. For campylobacteriosis these areas are predominately the areas of highest 
population density. The aggregations of negative sign spatial effects (red) indicate areas where there was 
less disease incidence in the data than the other model terms adjusted for. For campylobacteriosis these 
areas are predominately the areas of lowest population density.

The pattern for cryptosporidiosis is essentially similar to that for campylobacteriosis but there are some 
important differences. Compared to the campylobacteriosis model, other terms in the cryptosporiosis 
model do not adjust for disease risk in the Waikato and West coast. We speculate this could be due to our 
use of rurality rather than animal density (particularly dairy cattle) in the model.

The patterns for meningococcal disease and influenza are similar to each other and substantially different 
from those for campylobacteriosis and cryptosporidiosis. The predominance of red in the top third of the 
South Island indicates areas where there was actually less disease incidence in the data than the other 
model terms adjusted for. The association of positive sign spatial effects with high population areas 
remains but is less obvious.
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FIGURE 1: SPATIAL RANDOM EFFECTS FROM THE DISEASE MODELS
(Outline map is district health boards)
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3.3 	Projecting disease incidence 
The projected average rainfall data were provided by NIWA in the format of the total change in rainfall 
(mm) per season, for each emission scenario. For our purposes, the projected seasonal change in rainfall 
needed to be converted into a weekly measurement. This was achieved by dividing the predicted seasonal 
change by 52/4. The projected change in temperature data required no conversion. The average absolute 
humidity projections were provided as the seasonal percentage change in absolute humidity (kg/m3) 
per degree change in temperature (oC). For our purposes, the percentage change in absolute humidity 
per season for each year (2015, 2040 and 2090) under each emission scenario was required. This was 
achieved using the following equation:

											           (9)

where ΔAHcit denotes the projected percentage change in absolute humidity for grid cell I and season t of 
the three future years under emission scenario c; ΔAHit denotes the projected change in absolute humidity 
per degree warming; ΔT�cit denotes the projected seasonal change in temperature for 2015, 2040 and 
2090 under each emission scenario; and AH denotes the average absolute humidity for each season 
from 1997 - 2007. The average absolute humidity for each season spanning 1997 - 2007 were 
summer=0.00936 kg/m3; autumn=0.00824 kg/m3; winter=0.00633 kg/m3; spring=0.00775 kg/m3.  

Confounders in the past association models (Section 3.2) provided the adjusted β� coefficients for the 
projection calculations. This relationship was assumed to stay constant between the study period and the 
projection years.

3.3.1 	Projection calculations
The posterior coefficient estimates (β�k) for the standardised climate covariates Zk, identified in the past 
association models, were used to calculate the percentage change in IR for each disease in 2015, 2040 
and 2090 for each grid cell i, under each emission scenario (Equation 10). The rational for the projection 
equation is defined below:

During the past association modelling, the count of disease in each grid-week, Yit, was assumed to follow 
a Poisson distribution with mean PARitλit, where PARit represents the population at risk in grid cell i, week 
t, and the outcome variable λit represents the probability of a disease notification from grid cell i in week t. 
The extended Knorr-Held Richardson was:

											           	

where λit denotes the probability of a notified case of disease in each grid cell i, week t; PARit is the 
population at risk offset; a denotes the intercept; Rt denotes the temporal component; Ui denotes the 
spatial component; β�k denotes the posterior coefficient estimate; and Zkit denotes n standardised covariates 
(climate variables and other confounders; Equation 1).

Based on the above equation, Equation 1 and the law of logarithms:

	

In calculating the percentage change in IR (ΔIRit), we take the ratio of the predicted incidence risk (IRit*) 
and the IR over the study period (IRit), for each grid cell i. Let IRit =        denote the IR from 1997 - 2007 
and IRit* =        denote the predicted incidence risk for grid cell i at future time t*. Therefore,

PARit

λit

PARit*

λit*
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where          denotes the change in IR; β�k denotes the posterior coefficient estimate for the climate 
variables; Wkit denotes the predicted change in climate variable k; Ui and Rt* denote the predicted spatial 
and temporal components for grid cell i in future time t*. Ui and Rt denote the spatial and temporal 
components spanning the 11 year study period; and Wk denotes the mean and s.e.(Wk) denotes the 
standard error for the covariates Wk over the 11 year study period. 

As non-climate covariates (confounders) were assumed to remain constant in relation to future 
projections, they can be removed from the equation. For the purposes of projection, the spatial and 
temporal effects (Ui and Rt, respectively) were incorporated implicitly, as they are assumed to remain 
constant over time. Hence, it was assumed that exp(Ui* − Ui) equals 1, as with exp(Rt* − Rt). This 
assumption followed that the population at risk, PARit, was also assumed to remain constant with time. 
Hence, exp(PARit* − PARit) was assumed to equal 1. This resulted in the predicted change in IRit being 
given by:

	

where         denotes the change in IR; β�k denotes the posterior coefficient estimate for m climate variables; 
s.e.(Wk) denotes the standard error of the climate variable Wk over the 11 year study period; and Wkit 
denotes the predicted change in climate variable Wk.

The predicted seasonal percentage change in IRit for grid cell i, year t under each emission scenario, is 
given by Equation 10:

where ΔIRit denotes the predicted percentage change in IR; β�k denotes the predicted coefficient 
(i.e.β�k =             ); and Wkit denotes the predicted change in climate variable Wk. 

3.4 	Projection results
Here we describe for each disease and each climate scenario (A2, A1B and B1) the 2090 HAIFA maps 
compared to those for 2040 and 2015. We start with the A2 climate scenario. This scenario is based on 
a future heterogeneous world based on a high population growth (15 billion by 2100) with subsequent 
projected most extreme change to the current climate. The B1 climate scenario describes a convergent 
world, with the lowest population growth trajectory (8.7 billion by 2050, decreasing to 7 billion by 2100). 
The A1B climate scenario is derived from the A1 scenario with an influence from B1, focusing on a 
balanced technological change in energy systems and economic growth.

3.4.1 Campylobacteriosis notification projections
The projection estimates for the climate variables are shown in Table 13. The adjusted posterior coefficient 
estimates for the three climate variables (temperature, rainfall and humidity) in the past association model 
for campylobacteriois were all positive. Projected increases in these variables will be expected to increase 
the IR of campylobacteriosis. Only humidity (average absolute) was significantly associated with the IR of 
campylobacteriosis in New Zealand from 1997 - 2007 in our past association model.

IRit

IRit*

IRit

IRit*

s.e.(Wk)

β�k

(10)
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Campylobacteriosis A2 scenario projections

The projected percentage change in campylobacteriosis IR for the A2 scenario in 2090 can be viewed in 
HAIFA. Projected percentage changes in incidence are all positive and range from a 3% increase in the 
winter and spring, to a 30% increase in the summer. There are seasonal differences as follows:

•	 �Autumn: In the North Island the largest projected increase is predominantly in coastal and heavily 
populated areas of the mid and lower parts. In the South Island the largest increase is in the 
Christchurch area, the west coast and south Canterbury, north Otago.

•	 �Winter: In winter the South Island experiences most of the increase. The largest increase is all the 
west coast (including Fiordland), and in Otago and south Canterbury. In the North Island the largest 
projected increase is predominantly in coastal Taranaki, New Plymouth and the Kapiti coast.

•	 �Spring: The range of values and the spatial pattern is very similar to that seen in the autumn except 
that in spring the North Island east coast had a more moderate projected increase.

•	 �Summer: In summer the North Island experiences most of the increase (up to 30%), predominantly 
occurring in the top half and coastal areas. In the South Island the largest projected increase occurs in 
pockets of the east coast.

Projections for 2040 show a similar spatial pattern and seasonal pattern with the projected percentage 
change reduced in magnitude. For autumn, winter and spring, the change includes negative percentages. 
The range of projected change spans from a -4% decrease in the autumn to a 15% increase in the 
summer.

Projections for 2015 show a similar spatial pattern and seasonal pattern with the projected percentage 
change again reduced in magnitude from 2040. The range of projected change spans from a -1% 
decrease in the autumn to a 5% increase in the summer.

Campylobacteriosis A1B scenario projections

The projected percentage change in campylobacteriosis IR for the A1B scenario in 2090 can be viewed in 
HAIFA. Projected percentage changes in incidence are all positive and range from a 2.2% increase in the 
autumn and spring, to a 25% increase in the summer. The pattern across the four seasons and across the 
country is the same as that seen for the A2 projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from a -2.4% decrease in autumn and 
spring, to a 15% increase in summer. For 2015 the range is from a -1% decrease in autumn and spring, 
and a 5% increase in summer.

Campylobacteriosis B1 scenario projections

The projected percentage change in campylobacteriosis IR for the B1 scenario in 2090 can be viewed in 
HAIFA. Projected percentage changes in incidence are predominantly positive and range from a -1.4% 
decrease in the autumn and spring, to an 18% increase in the summer. The pattern across the four 
seasons and across the country is the same as that seen for the A2 and A1B projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from a -4% decrease in autumn and 
spring, to a 13% increase in summer. For 2015 the range is from a -1.3% decrease in autumn and spring, 
and a 4.3% increase in winter.

3.4.2 Cryptosporidiosis notification projections
The adjusted posterior coefficient estimate for rainfall in the past association model for cryptosporidiosis 
was negative. For temperature it was positive. A projected increase in rainfall will be expected to decrease 
the IR, while an increase in temperature would decrease the IR. Both average temperature and rainfall 
were significantly associated with the IR of cryptosporidiosis in the past association model. The projection 
covariate estimates for the climate variables are shown in Table 13.
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Cryptosporidiosis A2 scenario projections

The projected percentage change in cryptosporidiosis IR for the A2 scenario in 2090 can be viewed in 
HAIFA. There is a wider range of projected change than for campylobacteriosis. Projected percentage 
changes in incidence range from a -51% decrease in the winter to a 40% increase in the spring and 
autumn. There are seasonal differences as follows:

•	 �Autumn: In the North Island the largest projected increase is predominantly in the Bay of Plenty, 
Auckland and Northland. The east of the North Island has a projected decrease in incidence. In the 
South Island the largest increase is in the south and south-west, and the west coast.

•	 �Winter: In the North Island the largest projected increase is predominantly in the east and northland. 
The largest increase in the South Island is in the east. The west coast of the South Island is projected to 
decrease in incidence up to -51%.

•	 �Spring: In spring the North Island experiences most of the increase (up to 40%), occurring across the 
island apart from areas of very low population. The west of the South Island has a projected decrease in 
incidence.

•	 �Summer: In summer the North Island experiences most of the increase, predominantly occurring in the 
west. In the South Island the pattern is very similar to that seen in the spring.

Projections for 2040 show a similar spatial pattern and seasonal pattern with the projected percentage 
change (both positive and negative) reduced in magnitude. For 2040 the range is from a -46% decrease 
in summer to a 30% increase in autumn and spring. Projections for 2015 show a similar spatial and 
seasonal pattern with the projected percentage changes further reduced in magnitude from 2040. For 
2015 the range is from a -19% decrease in summer to a 10% increase in autumn and spring.

Cryptosporidiosis A1B scenario projections

The projected percentage change in cryptosporidiosis IR for the A1B scenario in 2090 can be viewed in 
HAIFA. The projected percentage change in incidence covers a wide range from a -46% decrease in the 
winter (west coast, south island) to a 33% increase again in the winter (Northland, Auckland and east 
coast both islands). The pattern across the four seasons and across the country is the same as that seen 
for the A2 projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern. In 2040 the range is from a 
-46% decrease in summer to a 29% increase in autumn and spring; very similar to that for A1B 2090. 
For 2015 the range is much reduced, from a -18% decrease in summer to a 9% increase for autumn and 
spring.

Cryptosporidiosis B1 scenario projections

The projected percentage change in cryptosporidiosis IR for the B1 scenario in 2090 can be viewed in 
HAIFA. The projected percentage change in incidence covers a wide range from a -45% decrease in the 
summer (west coast, south island) to a 30% increase again in the autumn (Northland, Auckland and Bay 
of Plenty) and spring (bottom half of North Island and Auckland). The pattern across the four seasons and 
across the country is the same as that seen for the A2 and A1B projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from a -46% decrease in summer to a 
32% increase for autumn and spring. For 2015 the range is from a -18% decrease in summer to a 10% 
increase for autumn and spring. This is the same as the A1B projection for 2015.
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3.4.3 Meningococcal disease notification projections
The adjusted posterior coefficient estimate for average absolute humidity in the past association model 
for meningococcal disease was positive. For temperature it was negative. A projected increase in average 
absolute humidity will be expected to increase the IR, while an increase in temperature would decrease 
the IR. Both of these climate variables were not significantly associated with the IR of meningococcal 
disease in New Zealand from 1997 - 2007. The projection covariate estimates for the climate variables are 
shown in Table 13.

Meningococcal disease A2 scenario projections

The predicted percentage change in meningococcal disease IR for the A2 scenario in 2090 can be viewed 
in HAIFA. The direction of projected change for meningococcal disease is negative and compared to 
cryptosporidiosis and campylobacteriosis the range is small (-6% to -1%). There are seasonal differences 
but as all change is negative and between -6% to -1% it is important not to over-interpret these. 
Furthermore, of our indicator diseases meningococcal disease has the lowest incidence, so small relative 
changes presented here need to be interpreted in this light. This is not to negate that meningococcal 
disease is a severe disease of young children with serious consequence.

•	 �Autumn and Spring: The range of values is the same for both seasons (-4% to -1.1%) but the spatial 
pattern in the South Island differs. In spring the eastern South Island has the greatest decrease while 
the pattern in the autumn is not as clear. The spatial pattern in the North Island for both spring and 
autumn is essentially similar: the eastern North Island (excluding Mid-Central DHB) has the greatest 
decrease.

•	 Winter: The pattern is similar to that seen in the spring with a slightly greater projected decrease.

•	 �Summer: In summer the west of both islands (except top of north) are projected to experience most of 
the decrease. From south Waikato and Bay of Plenty northward, Hawkes Bay DHB and the south-east 
of the South Island are projected to experience least of the decrease.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from -3% to 0.3%, both projected for 
winter. For 2015 the range is from a -0.9% decrease in the winter to a 0.4% increase for autumn and 
spring.

Meningococcal disease A1B scenario projections

The direction of projected percentage change in meningococcal disease IR for the A1B scenario in 2090 
is negative for all seasons. The range of the projected percentage change in incidence is from a -5.4% 
decrease in summer to a -0.9% decrease in autumn and spring. The pattern across the four seasons and 
across the country is very similar to that seen for the A2 projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from a -4% decrease in summer to a 
1.6% increase in spring and autumn. For 2015 the range is from a -0.9% decrease in winter to a 0.3% 
increase for autumn, winter and spring.

Meningococcal disease B1 scenario projections

The projected percentage change in meningococcal disease IR for the B1 scenario in 2090 can be viewed 
in HAIFA. The range of the projected percentage change in incidence is a -3.5% decrease in winter to a 
0.4% increase in autumn and spring. The pattern across the four seasons and across the country is very 
similar to that seen for the A2 projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from a -2.3% decrease in winter to a 
1% increase in winter, spring and autumn. For 2015 the range is from a -0.8% decrease in the winter to a 
0.4% increase for autumn, winter and spring.
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3.4.4 Influenza hospitalisation projections
The adjusted posterior coefficient estimate for average absolute humidity in the past association model 
for influenza hospitalisations was positive. For temperature it was negative. The coefficients are very 
similar to those for the meningococcal disease model. For this reason, for a given scenario and a given 
year, we would expect the projected percentage change in IR to be very similar between these two 
diseases. Increases in average absolute humidity will be expected to increase the IR, while an increase in 
temperature would decrease the IR. Both these climate variables (average absolute humidity and average 
temperature) were not significantly associated with the IR of influenza hospitalisations in New Zealand 
from 1997 - 2007. The projection covariate estimates for the climate variables are shown in Table 13.

Influenza hospitalisations A2 scenario projections

The projected percentage change in influenza hospitalisations IR for the A2 scenario in 2090 can be 
viewed in HAIFA. The direction of the projected change for influenza hospitalisations is negative and 
compared to cryptosporidiosis and campylobacteriosis the range is small (-6.5% to -1.4%). This range is 
similar to that seen for meningococcal disease and the spatial pattern is essentially the same. There are 
seasonal differences as follows:

•	 �Autumn and Spring: The range of values is the same for both seasons (-4.7% to -1.4% and -4.6% to 
-1.4%, respectively) but the spatial pattern in the South Island differs. In spring the eastern South Island 
has the greatest decrease while the pattern in the autumn is not as clear. The spatial pattern in the 
North Island for both autumn and spring is essentially similar: the eastern North Island (excluding Mid-
Central DHB) has the greatest decrease.

•	 Winter: The pattern is similar to that seen in the spring with a slightly greater decrease (up to -6.5%).

•	 �Summer: In summer the west of both islands (except top of North) are projected to experience the 
greatest decrease. From south Waikato and Bay of Plenty northward, for Hawkes Bay DHB and the 
south-east of the South Island are projected to experience the least decrease.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from a -3% decrease in the winter to a 
1.3% increase for autumn and spring. For 2015 the range is from a -1% decrease in the winter to a 0.3% 
increase for autumn, summer and spring.

Influenza hospitalisations A1B scenario projections

The direction of projected percentage change in influenza hospitalisations IR for the A1B scenario in 2090 
is negative for all seasons. The size of the change is slightly reduced in magnitude to that seen for the A2 
projections. The range of the projected percentage change in incidence is a -5.6% decrease in winter to a 
-0.5% decrease in autumn and spring. The pattern across the four seasons and across the country is very 
similar to that seen for the A2 projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is a -2.7% decrease to a 0.8% increase for 
both spring and autumn. For 2015 the range is a -0.8% decrease to a 0.4% increase for both spring and 
autumn.

Influenza hospitalisations B1 scenario projections

The projected percentage change in influenza hospitalisations IR for the B1 scenario in 2090 ranges from 
a -4.1 % decrease in winter to a 0.5% increase in autumn and spring. The pattern across the four seasons 
and across the country is very similar to that seen for the A2 projections.

Projections for 2040 and 2015 show a similar spatial and seasonal pattern with the range of projected 
percentage change reduced in magnitude. For 2040 the range is from a -2.8% decrease in winter to a 
1.4% increase in spring and autumn. For 2015 the range is from a -0.9% decrease in the winter to a 
0.5% increase for autumn and spring.
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TABLE 13: DISEASE NOTIFICATION PROJECTION RESULTS

Climate Covariate (Wk) β�k s.e.(Wk) (1997-2007) β�k p-value

Campylobacteriosis

Average Absolute Humidity 0.1429 0.0017 85.0448 0.000
Average Rainfall 0.0069 7.6419 0.0009 0.387
Average Temperature 0.0118 4.5039 0.0026 0.505

Cryptosporidiosis
Average Rainfall -0.0943 7.6419 -0.0123 0.002
Average Temperature 0.1244 4.5039 0.0276 0.004

Meningococcal disease
Average Absolute Humidity 0.0483 0.0017 28.7192 0.257
Average Temperature -0.1173 4.5039 -0.0260 0.166

Influenza hospitalisation
Average Absolute Humidity 0.0462 0.0017 27.4708 0.918
Average Temperature -0.1274 4.5039 -0.0283 0.541

3.5  Identification of risk groups
3.5.1  Campylobacteriosis
In addition to identifying regional projected risk (Section 3.4.1) the past association model identified 
population groups expected to be most at risk of campylobacteriosis notification (see Table 9 for 
significant risk factors). These include those living in VCS grid cells where the dairy density is high. For 
a standard deviation increase in dairy density the rate of notified cases of campylobacteriosis changes 
by a factor of 1.04, assuming all other covariates remain constant. Other risk factors for notification 
at the grid level include a positive association with beef density, poor and intermediate drinking water 
quality, age and ethnicity. For a standard deviation increase in the grid-level proportion identifying with 
Maori ethnicity (at the expense of the baseline group of European and others) the rate of notified cases 
of campylobacteriosis changes by a factor of 0.67, assuming all other covariates remain constant. It is 
important to be aware that these characteristics (ethnicity, age. animal density etc.) are measured at the 
level of the VCS grid cells. Making inference on individual level-risk factors for notification is not an output 
from this work.

3.5.2  Cryptosporidiosis
In addition to identifying regional projected risk (Section 3.4.2) the past association model identified 
population groups expected to be most at risk of cryptosporidiosis notification (see Table 10 for significant 
risk factors). These include those living in VCS grid cells classified as rural. The rate of notified cases of 
cryptosporidiosis changes by a factor of 1.57 for rural grids when compared to urban grids, assuming 
all other covariates remain constant. Other risk factors for notification at the grid level include a positive 
association with poor drinking water quality, and ethnicity. For a standard deviation increase in the grid-
level proportion identifying with Maori ethnicity the rate of notified cases of campylobacteriosis changes 
by a factor of 0.71, assuming all other covariates remain constant. 

3.5.3  Meningococcal disease
In addition to identifying regional projected risk (Section 3.4.3) the past association model identified 
population groups expected to be most at risk of meningococcal disease notification (see Table 11 for 
significant risk factors). These include young children. For a standard deviation increase in the grid-level 
proportion of four year olds the rate of notified cases of meningococcal disease changes by a factor of 
1.14, assuming all other covariates remain constant. Other risk factors for notification at the grid level 



MODELLING THE HEALTH IMPACTS OF CLIMATE CHANGE 32

include a positive association with NZDep and ethnicity. For a standard deviation increase in the grid-level 
proportion identifying with Maori ethnicity the rate of notified cases of meningococcal disease changes by 
a factor of 1.185, assuming all other covariates remain constant.

3.5.4  Influenza hospitalisations
In addition to identifying regional projected risk (Section 3.4.4) the past association model identified 
ethnicity as a risk factor for Influenza hospitalisations (see Table 12 for significant risk factors). For a 
standard deviation increase in the grid-level proportion identifying with Maori ethnicity the rate of notified 
cases of influenza hospitalisation changes by a factor of 1.218, assuming all other covariates remain 
constant. 
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4. 	Mathematical Models 
for Campylobacteriosis and 
Cryptosporidiosis

4.1  All-population model for either illness
The SIR zoonosis model (McBride and French 2006) contains Methuselah (adult) rates for groups in one of 
three states: Ill, Susceptible and Recovered. These are written in dimensionless form as i∞, r∞ and s∞. 
For the campylobacteriosis case, where we always have ∆ > 0 (∆ = ν 2 – y, see Equation (8), where 
ν = (γ – cK1 – δ)/2 = (p – q)/2), these equations are:

so that i∞, r∞ and s∞ = 1, as required. In these equations:

4.2  Campylobacteriosis
Typical parameter values (for campylobacteriosis) are: 

Pathogen contact rate	 c = 2–10 (per year)

Natural death rate	 α = 0.0125 (per year)

Prob(infection | contact with pathogen)	 K1 = 0.1

Prob(illness | infection)	 K2 = 0.2 

Reciprocal of shedding period	 γ = 26 (per year)

Immunity loss rate	 δ = 0.1 – 0.35 (per year)

So, assuming that only the pathogen contact rate (c) varies between the years, we have the ratio of 
future-year and reference-year Methuselah illness proportion (ρadult) as in equation 9. Actually, it may 
make more sense to state this assumption in terms of the product cK1 (c and K1 always appear as a 
product); that’s what is assumed to vary between the years. That quantity is the frequency of contact with 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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a pathogen that leads to infection, rather than the frequency of contact with a pathogen regardless of 
whether it leads to infection. That’s much better since it covers the whole process of infection, not just 
contact.

In equation 9, i∞,f denotes the predicted illness proportion for a future scenario and i∞,r  denotes that 
proportion for the reference year (2002). Similarly, cf denotes the pathogen contact rate for a future 
scenario and cr denotes that rate for the reference year (2002). 

Furthermore, since γ >>α we have:

and, since, δ >>α, and δ + cK1 >> δcK1K2/γ, we have

Now statistical modelling associated with this project indicates that reported campylobacteriosis rates may 
increases with rainfall and with temperature. Also, recent studies have shown that the concentration of 
zoonotic Campylobacter jejuni strains in flowing waters increases substantially during rainfall (French et al. 
2010; McBride et al. 2011). And so we take

which guarantees that cf is always positive (The linear model described by cf = cr(1 + βr∆R + βT∆T) carries no 
such guarantee), and where ∆R and ∆T denote changes in rainfall and temperature (with rate coefficients 
βR and βT), respectively. Therefore

We now need to get satisfactory values of βR and βT. To do so, first set βT = 0, and let’s expect that under 
the maximum rainfall increase (783 mm, winter 2090) we will get a 50% increase in the pathogen contact 
rate. Therefore, from (12), 

and so for the maximum rainfall decrease (–295 mm, autumn 2090) we will have 
cf/cr = e–(0.000518x295) ≈ 0.858.

Similarly, for the temperature coefficient, let’s expect that under the maximum temperature increase 
(3.686 oC, summer 2090) we will get a 25% increase in the pathogen contact rate. Therefore, from (12), 
setting βR = 0, 

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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and so for the maximum temperature decrease (–0.988 oC, autumn 2040) we will have 
cf/cr = e(0.08x0.988) ≈ 1.08.

Finally, reported rates are seasonal, being higher in early summer than in winter. So cr needs to be indexed 
to that variation. So if the annual average seasonal contact rate is cr then each seasonal value of cr is given 
by 

where nseason is the notified rate for each DHB for each season and n is the annual average of the 
seasonal notification rates for the DHB. Equation (16) has not been used at this stage. Rather, the 
seasonal variation of pathogen contact rate has been applied uniformly across all DHBs. That equation 
could be implemented later (at a probably-small computational cost). But the seasonal patterns of 
variation of reported illness rates across DHBs (read from www.nzpho.org.nz) and all rather similar, so its 
implementation might not make much difference.

Standard values taken for the parameters for these cases are:

Pathogen contact rate	 c = 2 (per year)

Natural death rate	 α = 0.0125 (per year)

Prob(infection | contact with pathogen)	 K1 = 0.1

Prob(illness | infection)	 K2 = 0.2 

Reciprocal of shedding period	 γ = 26 (per year) (≡ shedding period of 14 days)

Immunity loss rate	 δ = 0.35 (per year)

These values were selected to reproduce the pattern of illness inferred from reporting data, viz: overall 
proportion affected at any one time = 0.001 and the notification rate for children (0–4 years) is about five 
times the adult rate (McBride & French unpublished manuscript).

Further results from the statistical modelling indicates that reported campylobacteriosis rates may be 
associated with absolute humidity. Accordingly, we could construct a model in which

where βH denotes the rate coefficient. We would assume that at the maximum increase in absolute 
humidity percentage the pathogen contact rate will double. However, humidity was not included in the 
final  mathematical model.

4.2.1  Child campylobacteriosis model (0–4 year old)
Here the issue is not so simple; few terms cancel. We first have to calculate the age at which the child 
maximum rate occurs (using the standard parameter set), using results from our turning-point analysis 
(McBride and Harper 2010). Then we calculate the illness proportion.

The age-at-maximum is given by 

assuming that λ > ζ, and where

(16)

(17)

(18)

(19)



MODELLING THE HEALTH IMPACTS OF CLIMATE CHANGE 36

and where,

The illness proportion at that age is 

and so the required ratio is

giving

4.2.2  Gender models for campylobacteriosis
The reported campylobacteriosis rates (from www.nzpho.org.nz) consistently show that males report 
higher campylobacteriosis rates cf. females, on the order of 20%, such that the proportion of males 
affected at any one time is about 0.0012 and for females 0.0008. To account for those differences we 
have adjusted the probability of infection (given contact with the pathogen) such that K1,males = 0.15 and 
K1,females = 0.075.

4.2.3  Rural versus urban models for campylobacteriosis
These have not been implemented. Were that to be done, McBride and French (unpublished manuscript) 
note that to do so the SIR model for the rural population would need to adjust the pathogen contact rate 
(to c = 8 per annum) and the immunity loss coefficient would need to reduce (to δ = 0.1 per annum). For 
those choices the rural adult population is predicted by the SIR model to have a lower illness rate (cf. the 
general population) whereas the rural children exhibit a higher rate than their urban counterparts. This 
pattern is consistent with the observations. It results from rural dwellers having higher contact rates with 
this pathogen (which is widely dispersed through the environment; McBride et al. 2011; Till et al. 2008) 
and therefore gaining enhanced immunity.

4.3  Cryptosporidiosis
The notified rates for the base year (2002) exhibit an overall rate of about 25 illness cases per 100,000 
population per annum; an order-of-magnitude lower than the campylobacteriosis rate. Notably, there is a 
very marked peak in the 1–4 year old group, which is on the order of 10 times the adult rate. This speaks 
of a lower effective pathogen contact rate (= cK1), and also a lower immunity loss rate. To achieve this 

(20)
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pattern the standard parameter set for the SIR model has been derived as:
Pathogen contact rate	 c = 1 (per year)
Natural death rate	 α = 0.0125 (per year)
Prob(infection | contact with pathogen)	 K1 = 0.2
Prob(illness | infection)	 K2 = 0.2 
Reciprocal of shedding period	 γ = 26 (per year) (≡ shedding period of 14 days)
Immunity loss rate	 δ = 0.02 (per year)

For the climate relationships, we note from the literature (Atherholt et al. 1998; Bridgman et al. 1995; 
Hoxie et al. 1997;Hu et al. 2007; Jagai et al. 2009; Lake et al. 2005) that we can expect that reported 
illness rates may increase with rainfall and with temperature. Proceeding as before, we now need to get 
satisfactory values of βR and βT. To do so, first set βT = 0, and let’s expect that under the maximum rainfall 
increase (783 mm, winter 2090) we will get a 50% increase in the pathogen contact rate. Therefore, from 
Equation (12), 

and so for the maximum rainfall decrease (–295 mm, autumn 2090) we will have cf/cr = e–(0.0005x295) ≈ 0.863.

Similarly, for the temperature coefficient, let’s also expect that under the maximum temperature increase 
(3.686 oC, summer 2090) we will get a 50% increase in the pathogen contact rate. Therefore, from (12), 
setting βR = 0, 

(the minus sign is correct; it gets cancelled out in Equation (12) once βT is inserted). And so for the 
maximum temperature decrease (–0.988 oC, autumn 2040) we will have cf/cr = e(-0.11x0.988) ≈ 0.90.

4.4  Implementation
These models have all been developed using standard Excel calculations, for a set of nodes for the 5 km x 
5 km VCS grid covering New Zealand (11,491 lines), kindly supplied by Andrew Tait, NIWA. The projected 
percentage change in campylobacteriosis and cryptosporidiosis for the three climate change scenarios and 
time periods can be viewed in HAIFA.

(24)

(25)
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5. 	Mathematical Models for Influenza

5.1  Mathematical model
The mathematical model originally selected for seasonal influenza was that by Casagrandi et al. (2006). 
There, the population is divided into four epidemiological classes with respect to the current dominant 
strain: those fully susceptible (S), those infected with the current dominant strain (I), those recovered from 
the current dominant strain who retain full immunity (R), and those recovered from a previous dominant 
strain, who have some degree of cross-immunity (C). The model is capable of producing realistic aperiodic 
time-series for subtyped data with quantitative indicators (e.g. attack rates) that match well with empirical 
evidence. However, the model also displays a wide range of behaviours (including chaotic behaviour) and 
is very sensitive to changes in the parameters. In fact, the appropriate parametric region for influenza 
in temperate countries is right where the model displays the richest variety of behaviours. This is not 
unexpected, as the size and timing of annual influenza epidemics vary from year to year and so the most 
interesting models fall into the category of ‘chaotic’ (Truscott et al. 2009). Whilst the model is capable 
of producing realistic results, the extreme parameter sensitive makes it very difficult to use in a predictive 
capacity and so an alternative approach was required.

The alternative adopted is the simple treatment by Shaman et al. (2010) where there is no differentiation 
between different viral strains. This approach results in less complicated model behaviour, but is still 
somewhat problematic as the results remain sensitive to changes in the parameters. The population is 
divided into three epidemiological classes: susceptible individuals (S), infected individuals (I), and recovered 
individuals (R). Susceptible individuals become infected through contact with those already infected, 
and, once recovered, retain some temporary immunity before becoming re-susceptible. The population is 
assumed to be large enough that death by the disease may be considered negligible compared to natural 
mortality. Though not in the original formulation, vaccination is also included here by moving a portion of 
susceptible individuals to the recovered class at appropriate intervals. A schematic of the model is shown 
in Figure 2 and the parameters are summarised in Table 14. 

FIGURE 2:  FLOW DIAGRAM DEPICTING MOVEMENT OF THE POPULATION BETWEEN THE THREE 
EPIDEMIOLOGICAL CLASSES
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TABLE 14:  INFLUENZA MODEL PARAMETERS AND UNIT

Parameter Description

B Birth rate (newborns year-1)

μ Proportional death rate due to natural mortality (year-1)

λ(t) Force of infection (year-1)

α Proportional rate at which infected individuals recover (year-1)

γ Proportional rate at which recovered individuals become re-susceptible (year-1)

V(t) Proportion of individuals successfully vaccinated (year-1)

β(t) Effective contact rate (year-1)

ε Vaccine effectiveness (-)

ν Vaccination coverage rates (year-1)

The model is normalised by writing s= S/N, i= I/N and r= R/N, where N=S+I+R is the total population. In this 
way, s, i and r represent the proportional distribution of the population across the three epidemiological 
classes. Assuming that the total population remains constant, i.e. B=mN, the system of equations is:

The force of infection, λ, describes the rate at which susceptible individuals become infected through 
contact with those already infected; it has formulation

where β(t) is the effective contact rate (the per capita rate of infection given contact, which will depend 
upon the transmissibility of the virus and the frequency of contact). Vaccination of the population is 
assumed to take place in autumn, such that the proportion of successfully vaccinated individuals is given by

where e is the vaccine effectiveness (-) and ν is the coverage rate (proportion of the population vaccinated 
per campaign). The vaccine effectiveness is set at e=0.6, a little lower than the 80 % typically expected for 
healthy adults under 65(MoH 2011) to compensate for the inclusion of at-risk groups within the population. 
The vaccination coverage rate is set according to values provided for 2008 (Table 15).

TABLE 15:  VACCINE COVERAGE RATES BY DHB

DHB ID DHB Name ν (-) DHB ID DHB Name ν (-)

1 Northland 0.157 12 Mid Central 0.169

2 Waitemata 0.149 13 Hutt Valley 0.161

3 Auckland 0.247 14 Capital and Coast 0.205

4 Counties-Manukau 0.104 15 Wairarapa 0.204

5 Waikato 0.155 16 Nelson Marlborough 0.175

6 Lakes 0.186 17 West Coast 0.136

7 Bay of Plenty 0.183 18 Canterbury 0.222

8 Tairawhiti 0.116 19 South Canterbury 0.196

9 Taranaki 0.169 20 Otago 0.197

10 Hawkes Bay 0.210 21 Southland 0.147

11 Whanganui 0.170

(1)

(2)

(3)
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The quantity most useful for comparing against observed data is the incidence of infection, i.e. the 
average number of new invasive infections (cases) per time period. Based on the equations above, the 
incidence of infection (cases year-1) is given by

where T=1 year. For influenza, another statistic often quoted is the attack rate, which is simply the 
average incidence over a number of epidemic seasons, i.e.

where Lk represents the incidence during the kth of n epidemic seasons.
 
The non-linearity of the model system of equations precludes finding an analytical solution. Consequently, 
the system is solved numerically with a coarse time-step of one season, using MATLAB 2009 (with in-built 
function ode45) to solve at a finer resolution within each time-step. Because of the complicated model 
behaviour, we need to evaluate the attack rate assuming a “long-time solution”, i.e. by running the 
model for a long enough simulation period to avoid transient dynamics and then averaging the incidence 
following this time. Such an approach results in a series of discrete “snapshots in time” for the attack 
rate, rather than continuous predictions.

5.2  Incorporating climate change and/or variability
The mechanisms behind influenza seasonality are not yet well understood, however, recent research by 
Shaman and Kohn (2009) has highlighted absolute humidity as a key variable modulating both survival 
and transmission of the virus. In subsequent work, Shaman et al. (2010, 2011) developed a functional 
relationship between the basic reproduction ratio R0 and absolute humidity based on laboratory 
experiments of virus transmission and survival. The relationship has the form

where q(t) is the specific humidity (i.e. the ratio of water vapour to dry air in a particular mass), which 
is a mass-based measure of absolute humidity, a=–180, b=In(Ro,max–Ro,min), and Ro,min and Ro,max are the 
minimum and maximum basic reproduction ratios on any given day. Equation (5) implies that R0=Ro,max 
when q=0 and that R0 approaches R0,min asymptotically as q increases.

According to this formulation, humidity acts upon the model through the effective contact rate b which is 
related to Ro by

Shaman et al. (2010) suggest that the likely ranges for Ro,min and Ro,max are between 1.05 – 1.30 and 2.6 
– 4.0, respectively. To parameterise these values for New Zealand conditions, a number of model runs 
were performed with Ro,min and Ro,max selected randomly from within the likely ranges (using the national 
seasonal average specific humidity for the baseline period). It is expected that the annual attack rate 
should be between 10 – 20 % (Jennings et al. 2001). From the model runs, Ro,min and Ro,max values around 
1.3 and 3.5 resulted in attack rates between 12 – 15 %.

5.3  Calculating projections for each climate scenario
As noted earlier, due to the complexity of the model behaviour for seasonal influenza, predictions for 
the attack rate during any given period are made assuming a “long time solution”, i.e. by running the 
model for a long enough period to avoid transient dynamics and then averaging the incidence following 

(4)
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this time. As a result, calculating projections for the percentage changes in the reported attack rates for 
seasonal influenza at the 5 km x 5 km VCS grid-scale requires running the model separately for each 
grid cell and each projection year under each climate scenario. This assumes a sort of “quasi steady-
state”, whereby the virus reacts quickly to changes in the specific humidity between projection periods. 
The simulation period for each separate model run was 400 years (using a time-step of 1 season), with 
the seasonal and annual attack rates calculated by averaging the incidence over the last 100 years. The 
averaging period of 100 years was selected to even out spurious values which may be induced by chaotic 
behaviour in the model.

Due to the complex behaviour of the model and its inherent parameter sensitivity, the projected seasonal 
attack rates are also highly sensitive to parameter variations and are therefore not particularly useful in a 
predictive capacity. Thus, they are not included in the HAIFA web tool. A better statistic (that is used in 
HAIFA) is the annual attack rate, which is much less sensitive to parameter variations and produces realistic 
values compared with data.

Running the model separately at such a small spatial scale also brings with it a number of issues which 
may affect the accuracy of the results, namely:

•	 �The SIR model is formulated on the assumption of an isolated population with no external influence. At 
the 5 km x 5 km grid scale there will be considerable movement of individuals between grid cells with 
exposure to different specific humidity, and therefore the assumption of an isolated population is likely 
invalidated.

•	 �The SIR model also assumes the population is large enough that death by the disease may be 
considered negligible compared to natural mortality.  At the 5 km x 5 km grid scale the population size 
may be too small for this assumption to remain valid.

These issues are ignored at present in generating the future projections for seasonal influenza under the 
different climate scenarios, but should be borne in mind when interpreting the results.

5.4  Summary
The mathematical model selected for seasonal influenza is based the simple SIR treatment by Shaman et 
al. (2010). Climate is incorporated into the model through the effective contact rate b, which describes 
the per capita rate of infection given contact and will depend upon the transmissibility of the virus and the 
frequency of contact. It is assumed that the key climate driver is absolute humidity, measured on a mass-
basis by the specific humidity. The functional relationship linking b with specific humidity is an inverse one 
(Shaman et al. 2010, 2011), such that increasing specific humidity results in a decreasing likelihood of 
infection.

The key assumptions for the model are:

•	 The population is isolated with no external influence;

•	 �The population is large enough that death by the disease may be considered negligible compared to 
natural mortality;

•	 �Absolute humidity is the key climate driver, measured by the specific humidity (the ratio of water 
vapour to dry air in a give mass); and

•	 Climate change and/or variability will primarily influence the survival and transmission of the virus.

The model can exhibit a wide range of behaviours (including chaotic behaviour). Due to this complexity 
of behaviour, projections for the attack rate over any given time period are generated assuming a “long 
time solution”, i.e. by running the model long enough to avoid transient dynamics and then averaging the 
incidence in the time following. The model is also very sensitive to changes in the parameters, meaning 
the parameter settings used can strongly influence the results.

The projections for the percentage changes in the reported attack rates of seasonal influenza at the 5 km 
x 5 km grid scale are generated by running the model separately for each grid cell and for each year 
under each climate scenario. Due to the parameter sensitivity, the projections for the seasonal reported 
attack rates in particular are highly variable and are not included in the HAIFA web tool. A better statistic 
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is the annual attack rate (used in HAIFA), which is much less sensitive to parameter changes and produces 
realistic values compared with data. The projection results for the three climate change scenarios and time 
periods can be viewed in HAIFA.

Overall, with the complex model behaviour and parameter sensitivity, one can question the 
appropriateness of using such models in a predictive capacity. Bearing in mind these difficulties, and with 
the assumptions surrounding the spatial scale, the attack rates predicted for the future projection periods 
under the each climate scenario should be taken with care.
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6. 	Mathematical Models for 
Meningococcal Disease

6.1  Mathematical model
The model selected for meningococcal disease is that by Mann (2009), which is formulated for the New 
Zealand epidemic. The model divides the population into eight age groups, with a maximum age of 70 
years (representing the average lifetime in the population). In each age group, the population is further 
divided into four epidemiological classes: susceptible individuals (S), asymptomatic carriers (C), invasively 
infected individuals (I), and those who have recovered from infection (R). Individuals can enter and leave 
each class through ageing and natural mortality. Susceptible individuals become infected through contact 
with either carriers or invasively infected individuals of any age. A portion of those infected develop 
symptoms and become invasively infected, and the remainder become asymptomatic carriers.  Once 
recovered from infection, individuals retain some temporary immunity before becoming re-susceptible. All 
newborns are assumed susceptible, and death by the disease is considered negligible compared with the 
natural mortality rate. Vaccination is also included by moving a portion of susceptible individuals in the 
vaccinated age groups to the recovered class during the appropriate years. A schematic of the model for a 
single age group is shown in Figure 3 and the parameters are summarised in Table 16.

()tS j()tC j()tRj()tI j ()()tStp jjj λ()()()tStp jjj λ−1 ()tS jj 11 −−μ ()tS jjμ ()tC jj 11 −−μ ()tC jjμ ()tR jj 11 −−μ ()tR jjμ ()tI jj 11 −−μ ()tI jjμ ()tC jjσ ()tC jjα ()tI jjδ ()tR jjγ ()()tStV jjj 111 −−−μ
FIGURE 3:  FLOW DIAGRAM DEPICTING MOVEMENT OF THE POPULATION BETWEEN THE FOUR 
EPIDEMIOLOGICAL CLASSES WITHIN A SINGLE AGE GROUP (AGE GROUP J)
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TABLE 16:  MENINGOCOCCAL DISEASE MODEL PARAMETERS AND UNITS

Parameter Description

B(t) Birth rate (newborns year-1)

μj

Proportional rate at which individuals leave age group j due to ageing and natural mortality 
(year-1)

pj
Proportion of infections in age group j which do not develop symptoms (-)

λj(t) Force of infection in age group j (year-1)

σj
Proportional rate at which carriers in age group j become invasively infected (year-1)

αj
Proportional rate at which carriers in age group j recover (year-1)

δj
Proportional rate at which invasively infected individuals in age group j recover (year-1)

γj
Proportional rate at which recovered individuals in age group j become re-susceptible (year-1)

Vj(t) Proportion of individuals in age group j successfully vaccinated (-)

The model formulation results in a coupled system of 24 non-linear ordinary differential equations to solve. 
Denoting the eight age groups by subscript j, the equations are:

    	 Age group ,1=j 	

    	

The force of infection, jλ , describes the rate at which individuals in age group j become infected through 
contact with individuals in all other age groups. The formulation is

where b(t) is the transmission coefficient (year-1), N(t) is the total population (all age groups), mi,j describes 
the mixing rate between individuals in age groups i and j (-), and v describes the infectiousness of carriers 
relative to those invasively infected (-).

The quantity most useful for comparing against observed data is the incidence of infection, i.e. the average 
number of new invasive infections (cases) per time period. Based on the equations above, the incidence of 
infection (cases year-1) is given by

where T=1 year.

(3)

(2)

(1)

(4)



MODELLING THE HEALTH IMPACTS OF CLIMATE CHANGE 45

The non-linearity of the model system of equations prohibits an analytical solution. Consequently, the 
system is solved numerically with a coarse time-step of one season, using MATLAB 2009 (with in-built 
function ode45) to solve at a finer resolution within each time-step. All parameter values used are the 
same as in Mann (2009, Section 2.4).

6.2  Incorporating climate change and/or variability
A number of studies have found associations between climate variables and the incidence of 
meningococcal disease (e.g. Cheesbrough et al. 1995, Lindsay et al. 2002, Molesworth et al. 2003, Sultan 
et al. 2005, Thomson et al. 2006, and Kinlin et al. 2009). The climate variable most consistently implicated 
across these studies is absolute or relative humidity. Here we will assume that absolute humidity is the key 
climate driver, measured by the specific humidity (the ratio of water vapour to dry air in a particular mass). 
This is consistent with a recent study identifying absolute humidity as the key climate driver for seasonal 
influenza (Shaman et al. 2010).

There is very little precedent, however, for incorporating climate variables into SIR-type models for 
meningococcal disease. It is anticipated that humidity will act upon the model through the transmission 
coefficient b which describes the net probability of developing infection given contact with a carrier or 
invasively infected individual. This assumes that climate change and/or variability will primarily affect the 
likelihood of developing infection given exposure (Cheesbrough et al. 1995), and neglects any potential 
impact on social factors e.g. contact rates. To identify whether a functional relationship exists linking 
b with specific humidity, the model was run season-by-season from 1997 – 2007 and compared with 
national reported case rates. For each season, 1000 different model runs were performed with b values 
drawn randomly from a uniform distribution in the interval [1, 5]. The optimum b value for each season 
was then chosen as that which resulted in the closest match between the modelled incidence and 
the national reported case rate. The corresponding population distribution across the epidemiological 
classes at the end of the season was used as the initial condition for the next season. Figure 4 shows the 
optimum b for each season plotted against the seasonal average specific humidity; based on this figure, 
the functional relationship is of the form

where q is the seasonal average specific humidity (dimensionless), and A and b are dimensionless 
constants. To optimise these constants for each DHB, a further 1000 different model runs were performed 
for each DHB from 1997 – 2007 with A and b allowed to vary by up to 50 % on either side of the values 
shown in Figure 4. The optimal A and b values for each DHB were selected as those which minimised the 
sum-of-squares error between the time-series of modelled incidence and reported case rates (Table 17).

FIGURE 4:  FUNCTIONAL RELATIONSHIP BETWEEN THE TRANSMISSION COEFFICIENT b AND THE 
SEASONAL AVERAGE SPECIFIC HUMIDITY

(5)
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TABLE 17:  OPTIMISED PARAMETER VALUES FOR EACH DHB

DHB ID DHB Name A b DHB ID DHB Name A b

1 Northland 7.75 157.90 12 Mid Central 6.04 200.90

2 Waitemata 6.44 166.21 13 Hutt Valley 5.50 173.67

3 Auckland 6.73 150.59 14 Capital and Coast 5.16 171.01

4 Counties-
Manukau

6.78 145.43 15 Wairarapa 5.39 163.40

5 Waikato 6.32 171.23 16 Nelson Marlborough 6.15 250.45

6 Lakes 5.40 149.90 17 West Coast 5.96 218.08

7 Bay of 
Plenty 6.03 168.56 18 Canterbury 5.24 215.67

8 Tairawhiti 5.79 159.29 19 South Canterbury 5.17 224.98

9 Taranaki 5.34 166.92 20 Otago 5.47 199.43

10 Hawkes Bay 6.82 194.42 21 Southland 6.44 248.62

11 Whanganui 14.71 327.98

6.3  Calculating projections for each climate scenario
Projections for the percentage change in the reported incidence of meningococcal disease at the 
5 km x 5 km VCS grid-scale under each climate scenario were generated by running the SCIR model 
separately for each grid cell, using the corresponding projections for specific humidity and the appropriate 
parameters from Table 17. For each grid cell and each climate scenario, the model is run continuously 
for 100 years (1997 – 2097) with a time-step of 1 season. The specific humidity for each time-step 
is determined by linear interpolation between the baseline and future periods, as illustrated for the 
A1B scenario in Figure 5. The resulting time-series of seasonal incidence in each age group (and in the 
population as a whole) is averaged over the baseline period 1997 – 2007 (midpoint year 2002) and the 
future projection periods 2010 – 2020, 2035 – 2045 and 2085 – 2095 (midpoint years 2015, 2040 and 
2090). The percentage changes in seasonal average incidence between the baseline and future periods 
for each climate scenario should be interpreted in conjunction with the epidemic time-series (shown in 
Figure 6a–c). In each case, the baseline period captures the peak of the current epidemic and therefore 
the future projection periods show reduced incidence. The model also predicts a second (smaller) peak 
between 2040 – 2050 and a third (even smaller) peak between 2080 – 2090. The amplitude of the third 
peak is noticeably reduced between scenarios.

It should be noted that running the SCIR model separately at such a small spatial scale brings forth a 
number of associated issues which may affect the accuracy of the results, namely:

•	 �The SCIR model is formulated on the assumption of an isolated population with no external influence. 
At the 5 km x 5 km grid scale there will be considerable movement of individuals between grid cells 
with exposure to different specific humidity, and therefore the assumption of an isolated population is 
likely invalidated.

•	 �The SCIR model also assumes the population is large enough that death by the disease may be 
considered negligible compared to natural mortality. At the 5 km x 5 km grid scale the population size 
may be too small for this assumption to remain valid.

These issues are ignored at present in generating the future projections for meningococcal disease under 
the different climate scenarios, but should be borne in mind when interpreting the results.
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FIGURE 5:  NATIONAL SEASONAL AVERAGE SPECIFIC HUMIDITY EACH YEAR FOR THE A1B 
SCENARIO (Determined by linear interpolation between the 10-year average projections for 
midpoint years 2002, 2015, 2040 and 2090)

FIGURE 6A:  PROJECTED NATIONAL SEASONAL AVERAGE INCIDENCE (CASES PER SEASON, ALL 
AGES) FOR THE B1 SCENARIO, 1997 – 2097

FIGURE 6B:  PROJECTED NATIONAL SEASONAL AVERAGE INCIDENCE (CASES PER SEASON, ALL 
AGES) FOR THE A1B SCENARIO, 1997 – 2097
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FIGURE 6C:  PROJECTED NATIONAL SEASONAL AVERAGE INCIDENCE (CASES PER SEASON, ALL 
AGES) FOR THE A2 SCENARIO, 1997 – 2097

6.4  Summary
The mathematical model selected for meningococcal disease is that by Mann (2009), which is formulated 
for the New Zealand epidemic. The model divides the population into eight age groups, and also includes 
vaccination. Climate is incorporated into the model through the transmission coefficient b, which 
describes the net probability of developing infection given contact with a carrier or invasively infected 
individual. All other parameters remain the same as in Mann (2009). It is assumed that the key climate 
driver is absolute humidity, measured on a mass-basis by the specific humidity. The functional relationship 
linking b with specific humidity is an inverse one, such that increasing humidity results in a decreasing 
likelihood of developing infection. This formulation assumes that climate change and/or variability will 
primarily impact the likelihood of developing infection given exposure, and neglects any changes in social 
factors (e.g. contact rates between individuals).

The projections for the percentage changes in the seasonal reported incidence of meningococcal disease 
at the 5 km x 5 km VCS grid scale under each climate scenario are generated by running the model 
separately in each grid cell with the corresponding projections for specific humidity. These projections 
should be interpreted in conjunction with the epidemic time-series. The baseline period covers the peak of 
the current epidemic, however the model also predicts a second (smaller) peak between 2040 and 2050, 
and a third (even smaller) peak between 2080 and 2090. The amplitude of the third peak in particular is 
noticeably reduced with the higher emissions scenarios. The projection results for the three climate change 
scenarios and time periods can be viewed in HAIFA.

The key assumptions surrounding the model formulation are:

•	 The population is isolated with no external influence;

•	 �The population is large enough that death by the disease may be considered negligible compared to 
natural mortality;

•	 �Absolute humidity is the key climate driver, measured by the specific humidity (the ratio of water 
vapour to dry air in a given mass); and

•	 �Climate change and/or variability will primarily influence the likelihood of developing infection given 
exposure, neglecting any changes in social factors e.g. contact rates between individuals.

Implementing a separate model for each 5 km x 5 km grid cell potentially invalidates the first two 
assumptions as there is likely to be significant mixing of individuals between grid cells and the population 
sizes within each grid cell may be quite small. These issues are neglected at present, but should be 
considered as a potential source of error when interpreting the projections.
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7. 	Ross River Fever

7.1  Model outline
The multi-host / multi-vector Ross River virus SEIR (Susceptible – Exposed – Infectious – Recovered) 
deterministic model documented in Tompkins and Slaney (unpublished manuscript) was simulated 
independently in each of the 11,491 VCS grid cells (‘Stations’) within the R statistical environment. The 
model requires two main categories of data input to run – host and mosquito population estimates 
for each grid cell – in addition to parameter estimates for the different aspects of Ross River virus 
epidemiology. All model simulations were initiated with 0.0001 (i.e. 1 in 10,000) of the human population 
of each cell being in the Exposed class, with all other hosts and mosquitoes being Susceptible. This 
model setup simulates a putative disease incursion via, for example, tourists exposed in Australia during 
a Ross River virus outbreak returning to New Zealand before they become Infectious (Kelly-Hope et al. 
2002). Setting the incursion as a realistic proportion of the human population in each cell, rather than 
an absolute number of Exposed people, controls for likely greater ‘disease propagule pressure’ for bigger 
population centres. The model results for the three climate change scenarios and time periods can be 
viewed in HAIFA.

7.2  Model scenarios
The proportion of the human population exposed to Ross River virus (equivalent to the proportion ending 
up in the modelled “Recovered” class), as a result of an incursion of the disease coinciding with a pulse 
of mosquito abundance following favourable environmental conditions, was predicted for each grid 
cell under 20 different scenarios. The 20 scenarios consisted of 10 different climate scenarios (1990, 
2015A1B, 2015A2, 2015B1, 2040A1B, 2040A2, 2040B1, 2090A1B, 2090A2, 2090B1) under each of two 
different mosquito community scenarios (‘minor vectors only present’ versus ‘major and minor vectors 
present’). Differences between scenarios were implemented in model simulations solely as differences in 
the mosquito community and abundance present in each cell at the beginning of each simulation. This 
approach assumes that the host population densities in each cell, and the proportions of different land 
use types in each cell (used in the estimation of mosquito densities – see below), do not vary between 
scenarios; exploring the effect of such variation in host population densities and land use types on 
predictions was beyond the scope and remit of this investigation.

7.3  Host populations
As per the non-spatial model documented in Tompkins and Slaney (unpublished manuscript), five 
functional categories of Ross River virus hosts in New Zealand (with respect to Ross River virus dynamics) 
were recognised – Humans, Possums, Minor hosts, Dogs, and Dead-end hosts. While Wallabies are 
also recognised as a functional category of Ross River virus hosts in Tompkins and Slaney (unpublished 
manuscript), the numbers of these hosts present at different locations in New Zealand were shown in 
that study to have negligible effects on disease predictions, and hence are not considered in the current 
modelling exercise. Human population estimates for each grid cell were the PAR estimates as per Section 
2.3. Possum population estimates for each grid cell were obtained from the National Possum Model 
(Shepherd et al. 2011). Population estimates per cell of the other three host functional groups – Minor 
hosts, Dogs, and Dead-end hosts, were obtained by integrating the percentage cover of different land use 
types within each cell with expected host densities for each different land use type. The eight LCDB2 first 
order land classifications as per Section 2.6 were used as the source of land use data for each VCS cell. 
Expected host densities for each of the eight land-use categories were estimated from the literature and 
government sources (King 2006; MacLeod et al. 2006, 2009; Department of Internal Affairs; Ministry for 
Primary Industries). For ‘bare surfaces’ and ‘water bodies’ it was assumed no suitable hosts were present.
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7.4  Mosquito populations
Suitability spatial layers were generated for the six mosquito species under investigation and rescaled 
to the VCS grid. These ‘overall suitability’ layers integrated both land use suitability (based on mosquito 
species ecology and habitat needs) and climate suitability (based on mosquito species biology and larval 
development and climatic tolerances). The HOTSPOTS modelling approach (de Wet et al. 2005) was used 
to generate the land use and climate suitability layers based on the LCDB2 and the 10 climate scenarios 
detailed above.

Predicted current land use suitability scores (on a qualitative scale of 0-4) were generated for the ‘minor’ 
Ross River virus vectors Aedes notoscriptus, Culex pervigilans and Opifex fuscus (all species established in 
New Zealand), and the ‘major’ vectors Culex annulirostris, Aedes vigilax and Aedes camptorhynchus (not 
currently established in New Zealand, but with a threat of incursion from Australia). Predicted climate 
suitability scores (on a qualitative scale of 0-10) were also generated for A. notoscriptus, C. annulirostris, 
A. vigilax and A. camptorhynchus. For each of these four species, the ‘overall suitability’ layer was then 
derived in two steps. First, the climate suitability layer was rescaled to the same range (0-4) as the land 
use suitability layer with the new scores equalling the old scores (0,1), (2,3), (4,5), (6,7), and (8,9,10) 
respectively. Second, the land use and climate suitability scores for each grid cell were combined using a 
‘lowest score wins’ rule (i.e. a cell with a land use suitability score of 4 but a climate suitability score of 
2 would have an ‘overall suitability’ score of 2). The lowest-score wins rule was chosen on the basis of 
the factor (land use or climate) with the lowest score restricting the actual reproduction of that species 
irrespective of its potential under the other factor.

With predicted climate suitability layers lacking for C. pervigilans and O. fuscus (due to the lack of 
information on their larval development and climatic tolerances), the ‘overall suitability’ layer for  
A. notoscriptus alone formed the basis for estimates of maximum potential ‘minor vector’ abundance in 
each grid cell under each climate scenario. This decision was based on the combination of: C. pervigilans 
being the least competent for transmitting Ross River virus in laboratory studies; O. fuscus having a 
restricted geographical distribution along rocky parts of New Zealand’s coastline; and the actual and 
predicted ‘overall suitability’ distribution of A. notoscriptus being widespread (Cane and Disbury 2010; 
Holder 1999; Kramer et al. 2011; Watson and Kay 1998). 

With the complete set of predicted ‘overall suitability’ layers available for C. annulirostris, A. vigilax and A. 
camptorhynchus, a maximum potential ‘major vector’ abundance spatial layer for each climate scenario 
was derived. The maximum potential layers were derived by combining the three species sets of ‘overall 
suitability’ layers using a ‘highest score wins’ rule to give a single ‘major vector suitability’ score for each 
climate scenario (i.e. a cell with a C. annulirostris overall suitability score of 1, an A. vigilax score of 2 and 
an A. camptorynchus score of 3 would have a ‘major vector suitability’ score of 3). The highest-score wins 
rule was chosen on the basis of if conditions were highly favourable for at least one of the three species, 
the numbers of the other two present would little alter model predictions.

A key knowledge gap impacting our ability to predict the dynamics of mosquito borne diseases not yet 
in New Zealand is our lack of quantitative mosquito abundance data. Such information is important for 
mechanistic models such as the one utilised here. With no actual abundance estimates available, we 
equate both ‘minor vector suitability’ and ‘major vector suitability’ scores of 0-4 to actual peak mosquito 
densities of 0, 10, 100, 1000, 10000 mosquitoes per hectare, using these figures to calculate the ‘minor 
vector’ and ‘major vector’ mosquito abundances present in each grid cell at the beginning of each model 
simulation. These actual density values were chosen to encompass the calculated mosquito density ranges 
reported in Carver et al. (2009).

7.5  Epidemiological parameters
Parameter values used for model simulations as documented in Tompkins and Slaney (unpublished 
manuscript) are summarised in Table 18. Additional values not reported in the table are a vector bite 
rate of 0.14 bites day-1, a vector mortality rate of 0.1 day-1, and a value of 0.33 day-1 for the rate at 
which mosquitoes exposed to Ross River virus through feeding on an infectious host become infectious 
themselves (Carver et al. 2009).		
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8. 	Dengue Fever

8.1 	Modelling approaches 
A review of the numerous mathematical and statistical approaches used to model the epidemiology 
of dengue fever and dengue haemorrhagic fever was conducted. A general review of representing 
seasonality in modelling the spread of dengue, mainly influenced by entomological factors and climatic 
changes is given by Nishiura (2006).

The complex, mechanistic model described by Burattini et al. (2008) was identified as one that would 
prove to be useful for our purposes. This model uses a dynamical systems approach and has the 
advantage of incorporating known factors involved in the dynamics of dengue transmission. It has also 
been used in climate change and dengue fever studies in Singapore (Burattini et al. 2008) and in a recent 
review of modelling the impact of global warming on vector-borne infections by Massad (2011a). The 
simpler, empirically-based, logistic, vapour pressure dengue risk model by Hales et al. (2002) was also 
identified as being a useful model for our purposes. 

The model given by Burattini et al. (2008) is a delay differential equation (DDE) model that takes into 
account incubation time that vectors need to become infectious. The model describes the dynamics of 
a vector-borne infection in its three components of transmission, namely, human hosts, mosquitoes and 
their eggs (the latter includes the intermediate stages, like larvae and pupae). The populations densities, 
in turn, are divided into susceptible humans, denoted SH, infected humans, IH, recovered (and immune) 
humans, RH, total humans, NH=SH+IH+RH, susceptible mosquitoes, SH, infected and latent mosquitoes, LM, 
infected and infectious mosquitoes, IM, non-infected eggs, SE, and infected eggs, IE. 

A time-dependent sinusoidal term simulates the seasonal variation in mosquito production from eggs, 
assumed different for infected and susceptible eggs, for generality. By varying coefficients in this 
sinusoidal term, duration and severity of the winters can be simulated. A sinusoidal term represents the 
rate by which infected eggs become infected adults. 

The model given by Burattini et al. (2008) incorporates many factors of interest (e.g. vertical transmission, 
etc.) and allows one to derive analytical expressions for threshold conditions (R0), including sensitivity of 
the model to the parameters composing R0 as a function of temperature and virulence (Massad 2011a). 
The model equations and the threshold conditions were solved numerically using a DDE solver in R. 
Model parameters for New Zealand (e.g. mosquito biting rate) were obtained from the literature and 
from Tompkins (pers. comm.). 

The model given by Burattini et al. (2008) has been positively criticised by a number of authors. Yang 
(2011) criticises the sharp and sensitive delay term and also criticises the manner in which seasonality 
has been simulated. Yang (2011) suggests that as important is the increase in the temperature is socio-
economic conditions with a striking correlation between poverty and disease transmission. Roklov and 
Wilder-Smith (2011) call for refinement in the entomological data with a call that there is more about 
human adaptation (e.g. water containers) than climate and there are other important factors not 
considered in the model such as urbanisation and international travel. Aguiar (2011) makes the point 
that although this model provides useful information to understand the influence of temperature on 
the spread and transmission of dengue it is still not able to give any real predictive power and cannot be 
used as a decision making tool. Replies in the literature (including agreements) to the above comments 
are given by Massad (2011b). As the authors noted themselves, the specification of the model is sensitive 
to potential temporal and spatial heterogeneity and stochasticity of key parameters such as longevity, 
rate of daily bites, extrinsic incubation periods, and host mortality rates. 

A cross-check of at least four papers published on this model shows minor differences in the formulation 
and parameter values with some parameters not defined and some subscripts incorrect. Thus, it was 
decided not to utilise this model, due to: the complexity of the model; the uncertainty of parameters and 
equations given in the literature; and the difficulty with presenting the outputted geographic distribution 
of dengue fever and the potential influence of global climate change. 
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8.2 	Empirical model and results
A relationship is used between reported global distributions of dengue fever on the basis of vapour 
pressure, which is a measure of humidity (Hales et al. 2002). The approach is simple and is well established 
in the peer-reviewed literature (see Van Kleef et al. 2009). Thus, the decision was made to utilise this 
approach initially and the logistic equation used and its coefficients were obtained from Simon Hales, 
University of Otago. 

Projections for Absolute Humidity, Air Temperature, and Rainfall Total for every point of the 5km VCS grid 
were provided by Abha Sood and Andrew Tait, NIWA. These data were all mean seasonal changes from 
the baseline period 1997-2007 (i.e. the projected change in average summer temperature from 1997-2007 
(midpoint reference year 2002) to 2015, 2040 and 2090 for three emission scenarios; B1, A1B and A2). A 
baseline (midpoint reference year 2002) seasonal average vapour pressure for 1997-2007 was derived from 
vapour pressure during this period. Percentage changes in vapour pressure per degree warming for each 
season were also derived. In this form, vapour pressure change can be linked to the temperature change 
projections for 2015, 2040 and 2090 and the three emission scenarios B1, A1B and A2. 

The logistic relationship of Hales et al. (2002) was initially used to give seasonal dengue potential 
probability projections for 2015, 2040 and 2090 with the projected future climate change for emission 
scenarios B1, A1B and B2. The seasonal results were averaged over the year to give annual dengue 
potential probability for each VCS grid cell. Following this step, as it is unrealistic to have dengue disease 
potential across the entire country (due to mosquito specific habitat and climatic limitations), we then 
applied a climate and habitat suitability layer for the three main dengue vector species (Aedes aegypti, 
Aedes albopictus and Aedes polynesiensis). The suitability layers were derived using the HOTSPOTS 
modelling approach (de Wet et al. 2005). Where VCS grids from the initial step overlapped an “unsuitable” 
grid from step two, the associated dengue potential score was set to zero, all other grid cells had values >0 
and <1. The final GIS layers produced then reflected a more realistic dengue disease potential profile for 
New Zealand.

The dengue fever model results for the three climate change scenarios and time periods can be viewed in 
HAIFA. The key findings were:

•	 �For Ae. aegypti in 2015 with B1 (low emission scenario), dengue potential is predominantly constrained 
to the North Island with far northern New Zealand demonstrating the greatest potential.

•	 �The above pattern was similar across all emission scenarios for 2015, while 2040 and 2090 showed 
a similar dengue potential profile but with marked increase from the Waikato region northward, 
particularly so for A1B (medium) and A2 (high) emission scenarios.

•	 For 2040 and 2090 there was further inland dengue potential as well as southwards into South Island.

•	 �Both Ae. albopictus and Ae. polynesiensis mimic the dengue potential profile of Ae. aegypti. However, 
both these species demonstrated wider dengue potential distributions, particularly southwards into 
South Island.
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